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ABSTRACT

Data-driven design shows the promise of accelerating materials discovery but is challenging due to the prohibitive cost
of searching the vast design space of chemistry, structure, and synthesis methods. Bayesian Optimization (BO) employs
uncertainty-aware machine learning models to select promising designs to evaluate, hence reducing the cost. However, BO
with mixed numerical and categorical variables, which is of particular interest in materials design, has not been well studied.
In this work, we survey frequentist and Bayesian approaches to uncertainty quantification of machine learning with mixed
variables. We then conduct a systematic comparative study of their performances in BO using a popular representative model
from each group, the random forest-based Lolo model (frequentist) and the latent variable Gaussian process model (Bayesian).
We examine the efficacy of the two models in the optimization of mathematical functions, as well as properties of structural
and functional materials, where we observe performance differences as related to problem dimensionality and complexity. By
investigating the machine learning models’ predictive and uncertainty estimation capabilities, we provide interpretations of
the observed performance differences. Our results provide practical guidance on choosing between frequentist and Bayesian
uncertainty-aware machine learning models for mixed-variable BO in materials design.

Introduction
The goal of materials design is to identify materials with desired properties and performance that meet the demands of
engineering applications, from among the vast composition–structure design space, which is challenging due to the highly
nonlinear underlying physics and the combinatorial nature of the design space. The traditional trial-and-error approach usually
involves many experiments or computations for the evaluation of materials properties, which can be expensive and time-
consuming and thus cannot keep pace with the growing demand. To accelerate materials development with low cost, data-driven
adaptive design methods have recently been applied1–4. The adaptive design process starts with small data, selectively adds
new samples to guide experimentation/computation, and navigates towards the global optimum. The key to adaptive materials
design is an efficient policy for searching the chemical/structural design space for the global minimum, such that new samples
(material designs) are selected based on existing knowledge. Classical metaheuristic optimization methods, such as simulated
annealing (SA) and genetic algorithm (GA), select new design samples based on nature-inspired stochastic rules. However,
these methods require many design evaluations, and thus lack cost efficiency, which limits their applicability in materials
design.

In contrast, Bayesian Optimization (BO)5 represents a generalizable and more efficient adaptive design approach. Starting
from a small set of known designs, BO iteratively fits ML models that predict the performance and quantify the uncertainty
associated with unseen designs, and then selects new designs to be evaluated in the next iteration based on an acquisition
function. BO methods have demonstrated capabilities in the design optimizations of a diversity of materials, including
piezoelectric materials6, catalysts7, phase change memories8, and structural materials9. Through these successful cases, BO has
shown its versatility, as well as its high efficiency under a limited budget for design evaluation. Thus it has the potential of being
an essential component of data-driven design automation, benefiting materials researchers who are not experts in data science.

Acquisition functions guide the sampling process in BO. Commonly used acquisition functions, such as expected im-
provement (EI)10, take into account both exploitation (pursuing a better objective) and exploration (reducing uncertainty).
While exploitation is modulated by the ML model’s prediction, exploration relies on the estimation of uncertainty in the
predicted response for the unsampled sites. Therefore, uncertainty-aware machine learning (ML) models, i.e., ML models with
uncertainty quantification (UQ), play a central role in BO. Various approaches have been developed to equip ML models with
the UQ capability, which we will further discuss in the following section.

However, the mixed-variable problems, i.e., when design variables include both numerical and categorical ones, pose
additional challenges to uncertainty-aware ML, and are ubiquitous in materials design. The design variables in materials design
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tasks typically include processing, composition, and structure information. Some design variables such as process type (e.g.,
hydrothermal or sol-gel), element choice (e.g., Al or Fe), and lattice type (e.g., fcc or bcc) are categorical, while others such as
annealing temperature, stoichiometry, and lattice parameters, are numerical. For BO methods to be generally applicable to
these diverse design representations, uncertainty-aware ML models must be able to handle mixed-variable inputs.

In this work, we first examine the methods for quantifying uncertainty in ML models and contrast their fundamental
differences from a theoretical perspective. Based on this, we focus on two representative uncertainty-aware mixed-variable ML
models that involve frequentist and Bayesian approaches to uncertainty quantification, respectively, and conduct a systematic
comparative study of their performances in BO, with an emphasis on materials design applications. Based on the results, we
characterize the relative suitability of frequentist and Bayesian approaches to uncertainty-aware ML as related to problem
dimensionality and complexity. Our contribution is two-fold:

• Outline of the suitability of Bayesian and frequentist uncertainty-aware ML models depending on the characteristics of
problems;

• Identification of key factors that result in the performance difference between Bayesian and frequentist approaches.

We anticipate this study will assist researchers in physical sciences who use BO, providing practical guidance in choosing the
most appropriate model that suits their purpose.

Uncertainty-Aware Machine Learning
Uncertainty in Machine Learning Models
Uncertainty is ubiquitous in predictive computational models. Even if the underlying physics is deterministic, uncertainty still
exists due to the insufficiency of knowledge. Many efforts have been devoted to quantifying uncertainties of physics-based
computational models11–14 in science and engineering.

Unlike a physics-based model, the prediction of a data-driven model builds upon observations or previous data. Uncertainty
in the prediction arises from (1) lack of data, (2) imperfect fit of the model to the data, and (3) intrinsic stochasticity. These
collectively form the metamodeling uncertainty15, which reflects the discrepancy between the data-driven model’s prediction
and the response given by the physics-based model in unsampled regions. BO’s sampling strategy is aimed at reducing the
metamodeling uncertainty (exploration) and improving the objective function value (exploitation) by querying certain new
samples. To this end, it is desired to have uncertainty-aware ML models, for which the metamodeling uncertainty can be
quantified.

Frequentist and Bayesian Uncertainty Quantification
Several UQ techniques have been adopted to attain uncertainty-aware ML. Here, we group them into two broad categories:
frequentist and Bayesian. The frequentist approach obtains uncertainty estimation through various forms of resampling: in
general, a series of models { f̂i(xxx)}n

i=1 are fitted with different subsets of training data or hyperparameters, then the prediction
variability at an unsampled location is estimated from the variance among these models’ predictions:

ŝ2(xxx) =Var
(

f̂1(xxx), . . . , f̂n(xxx)
)
, (1)

where Var(·) can represent any variance estimate using frequentist statistics, potentially involving noise or bias correction
terms. Commonly used resampling techniques include Monte Carlo, Jackknife, Bootstrap, and their variations16. In particular,
uncertainty estimation using ensemble models17 or disagreement/voting of multiple models18 are also examples of the
resampling approach.

The frequentist UQ approach has been adopted in combination with various ML models, including random forests19, 20,
boosted trees21, and deep neural networks22–24. As this approach is generally applicable regardless of the type of ML model,
it is frequently coupled with “strong learners”, i.e., the models that are capable of accurately fitting highly complex and
non-stationary functions.

Instead of requiring a series of models, the Bayesian UQ approach treats the true model as a random field, and infers its
posterior probability from the prior belief and observed data5 to estimate the uncertainty. A prominent example is Gaussian
process (GP)25. When modeling the data (XXX ,yyy), a GP model views the observed response yyy as the true response fff plus random
noise. It assumes that the response fff at different input locations are jointly Gaussian, i.e., fff |XXX ∼N (µµµ,KKK). The covariance
matrix KKK is inferred from the similarity between inputs using a kernel function. It also takes into account the noise that may be
present in observations by assuming yyy| fff ∼N ( fff ,σ2III). For example, the radial basis function (RBF) kernel

K
(
y(xxx),y(xxx′)

)
= σ2 exp

{
−∑

i
ωi(xi− x′i)

2

}
(2)
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uses Euclidean distance metric and assigns Gaussian correlations a priori, with global variance σ2 and correlation parameters
ωi, to be learned via maximum likelihood estimation (MLE) in model training. The prediction derived from a GP model
includes both the mean and the variance, thus providing a measure of metamodeling uncertainty.

Besides GP, examples of ML methods with Bayesian-style uncertainty estimation include Bayesian linear regression and
generalized linear models, Bayesian model averaging26, and Bayesian neural networks27. When the posterior is not available in
analytical form, estimation of the posterior requires probabilistic sampling techniques such as Markov Chain Monte Carlo,
whose high computational cost limits its application to various ML models28. Therefore, the Bayesian UQ approach is often
adopted in specially designed ML models that have an analytical form posterior, such as GP.

Uncertainty Quantification in Mixed-variable Machine Learning
For mixed-variable problems, uncertainty quantification of ML models becomes more complicated. In early developed ML
methods, categorical variables are mostly handled by ordinal or one-hot encoding29. Ordinal encoding assigns integer labels for
each category; such encoding assumes ordered relations among categories, thus limiting its applicability. One-hot encoding
represents a categorical variable ti that takes value from categories (often referred to as levels) {`1, `2, . . . , `J} with a binary
vector

ccci = [c(1)i , . . . ,c(J)i ],c( j)
i = 1 j, (3)

where 1 j is an indicator function, i.e., when ti = ` j only the j-th element of ccci equals 1, and others equal 0. This encoding,
however, assumes symmetry between all categories (the similarity between any two categories is equal30), which is generally
not true.

In recent years, some methods have been proposed for uncertainty-aware ML in the mixed variable scenario. Lolo31,
for example, is an extension of the random forest (RF) model. As an ensemble of decision trees, RF has native support for
mixed-variable problems. Uncertainty is quantified by calculating variance at any sample point from the predictions of the
decision trees with bias correction.

GP models in the original form are uncertainty aware; however, they have problems handling categorical variables. The
covariance matrix is inferred from the similarity between inputs characterized by a distance metric. But the aforementioned
representations cannot represent the distances between categories. The latent variable Gaussian process (LVGP) model32, 33

solves this problem by mapping each categorical variable ti into a continuous-variable latent space, where each level ` j of ti is
represented by a vector zzzi = [z(1)i ( j), . . . ,z(q)i ( j)], where q, the dimensionality of latent space, is usually 2. The RBF kernel then
becomes

K
(
y(xxx, ttt),y(xxx′, ttt ′)

)
= σ2 exp

{
−∑

i
ωi(xi− x′i)

2−∑
i

∥∥zzz(ti)− zzz(t ′i)
∥∥2

2

}
, (4)

where ‖ · ‖2 is the L2 norm. Like other parameters, locations of latent vectors are obtained via MLE during model training.
With the latent variable representation, the categories are not required to be ordered or symmetric, and their correlations are
inherently estimated via distances in the mapped latent space. The latent variable configuration in the latent space also indicates
the effects of different levels of a categorical variable on the response, thus making the model interpretable32. There are
extensions of LVGP34, 35 that allow utilizing large training data, physical knowledge, as well as kernels other than RBF that are
suitable for fitting functions with different characteristics. In this work, the vanilla LVGP is used in comparative studies.

Related Comparative Studies
Some related studies have compared the performances of a variety of UQ techniques in materials design applications. For
example, Tian et al.16 compared four uncertainty estimators among the frequentist ones in materials property optimization.
Liang et al.36 conducted a benchmark study of BO for materials design using GP and RF models with different acquisition
functions. However, existing studies focus on BO where input variables are numerical, whereas practical materials design
problems are often mixed-variable problems. The performance of ML methods using frequentist or Bayesian UQ techniques in
BO under different circumstances involving categorical variables is not clear. In particular, the efficacy of the two approaches
in the materials design context has not yet been examined. We hope to fill the gap in this study.

Results and Discussion
To examine and compare the performances of Bayesian Optimization using the two ML models (denoted LVGP-BO and
Lolo-BO for conciseness), we tested them on both synthetic mathematical functions and materials property optimization
problems. Our comparative study is conducted using a modular BO framework (illustrated in Figure 1; details of implementation
are in Methods), in which both LVGP and Lolo can serve as the ML model.
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Figure 1. Schematic of Bayesian Optimization framework. An ML model is fitted to the known input–response data, and
predicts the response for unevaluated inputs with uncertainty. The acquisition function is calculated from the prediction,
guiding the selection of new input(s) to evaluate. The process iterates to find the optimal response.

We use this BO framework to search for the minimum value of any function y(vvv), where the input variables vvv = [xxx, ttt]
consists of numerical variables xxx and/or categorical variables ttt, and the response y is a scalar. The BO performances are
compared in two aspects, accuracy and efficiency. Accuracy relates to the ability to find the optimal objective function value.
We record the complete optimization history for every test case, so that accuracy can be compared by looking at the optimal
objective values observed at any time in the optimization process. Efficiency, on the other hand, is characterized by the rate
of reducing the objective function. In application scenarios such as materials design, the design evaluation (experimentation
or physics-based simulation) is often very time-consuming, in comparison, the time for fitting ML models and calculating
acquisition functions is negligible. Thus, when comparing efficiency, we focus on the time in terms of iteration number instead
of actual computational time. The BO method capable of converging to the global optimum in fewer iterations is favored under
these metrics. In the following part, we introduce the experimental settings and present the results for each test problem.

Demonstration: Mathematical Test Functions
We first present test results of minimizing mixed-variable mathematical functions selected from an online library37. For
functions that are originally defined on a continuous domain, we convert some of their arguments to be categorical for testing
purposes. As these are white-box problems, we can investigate the BO methods’ performance under different problem
characteristics, as well as the factors influencing the performance.

Low-dimensional Simple Functions
In the first test case, we use the Branin function, which has two input variables and relatively smooth behavior. We modify its
definition as follows:

f (x, t) =
(

t− 5.1
4π2 x2 +

5
π

x−6
)2

+10
(

1− 1
8π

)
cos(x)+10, (5)

where x ∈ [−5,10] is a numerical variable, and t is categorical, with categories corresponding to values {0,5,10,15}. To
provide an intuitive sense of its behavior, we visualize the function in Figure 2a. Lolo-BO and LVGP-BO are used respectively
to minimize the modified Branin function, starting with 10 initial samples. We repeat this 30 times with different random initial
designs for each replicate, and the optimization histories across replicates are shown in Figure 2e. To compare the overall
performance and robustness of LVGP-BO and Lolo-BO, we show both the median objective value ỹ and the scaled median
absolute deviation MAD = median(|y− ỹ|)/0.6745 at every iteration.

Another low-dimensional, simple test function is the McCormick function (visualized in Figure 2b), in the following
modified form:

f (x, t) = sin(x+ t)+(x− t)2−1.5x+2.5t +1, (6)
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Figure 2. a–d. Visualization of the Branin, McCormick, Camel, and Rastrigin functions in 2-dimensional (2D) continuous
form. e–h. Optimization histories across replicates for the Branin, McCormick, Camel, and Rastrigin functions. These plots
show the minimal objective function values observed at every iteration. Solid lines represent the median among replicates;
shaded areas show plus/minus one MAD. The green dashed lines mark the global minimum value of each function.

where x ∈ [−1.5,4], and t’s categories correspond to integer values {−3,−2, . . . ,4}. The initial sample size and number of
replicates are the same as described above; optimization histories are shown in Figure 2f. From the optimization history plots,
we observe that for both test functions, LVGP-BO converges to the global minimum in fewer iterations, thus showing better
efficiency.

Low-dimensional Complex Functions
We then test LVGP-BO and Lolo-BO in optimizing low-dimensional complex functions (definitions are provided in Methods),
in this case, rugged functions with several local and/or global minimums. The Six-Hump Camel function (Figure 2c):

f (x, t) =
(

4−2.1x2 +
x4

3

)
x2 + xt +(−4+4t2)t2, (7)

with x ∈ [−2,2] and t ∈ {±1,±0.7126,0}, is optimized in 30 runs, each starting from initial samples of size 10. As Figure 2g
shows, both LVGP-BO and Lolo-BO converge to the global minimum, while LVGP leads to faster convergence.

We also test optimizing the Rastrigin function, which has more local minimums (as shown in Figure 2d):

f (vvv) = 10d +
d

∑
i=1

[v2
i −10cos(2πvi)], (8)

where d is the adjustable dimensionality. We set d = 3, with two numerical variables x1,2 = v1,2 ∈ [−5.12,5.12], and one
categorical variable t = v3 ∈ {−5,−4, . . . ,5}. As Figure 2h shows, in optimizing this highly multimodal function, LVGP-BO
shows more performance superiority: it approaches the global minimum at around 60 iterations and eventually converges to the
global minimum, while Lolo-BO does not.

High-dimensional Functions
Moving beyond low dimensionality, we compare the two BO methods on a series of high-dimensional functions. We are
optimizing the Perm function (whose behavior in 2D is shown in Figure 3a):

f (vvv) =
d

∑
i=1

(
d

∑
j=1

(
ji +0.5

)
((

v j

j

)i

−1

))2

, (9)
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the Rosenbrock function (whose behavior in 2D is shown in Figure 3d):

f (vvv) =
d

∑
i=1

[
100

(
vi+1− v2

i
)2

+(vi−1)2
]
, (10)

and a simple quadratic function f (vvv) = ∑d
i=1 v2

i , where d denotes the dimensionality.

Figure 3. a. Visualization of the Perm function in 2D continuous form. b–c. Optimization histories for the 6D and 10D Perm
functions. d. Visualization of the Rosenbrock function. e. Optimization history for the 10D Rosenbrock function. f.
Optimization history for the 10D quadratic function.

For the Perm function, we used both low- and high-dimensional settings: (1) 6-dimensional (6D), with t = v6 ∈ {−4,1,6}
and x1,...,5 = v1,...,5 ∈ [−6,6]. In this case, the degrees of freedom D f = 7. (2) 10-dimensional (10D), with t1 = v6 ∈ {−4,1,6},
t2 = v7 ∈ {−8,−3,2,7}, t3 = v8 ∈ {−6,1,8}, t4 = v9 ∈ {±3,±9}, t5 = v10 ∈ {0,±5,±10}, and x1,...,5 = v1,...,5 ∈ [−10,10].
D f = 19 for this function. 10 replicates are run for each test, starting from initial samples of size 20 for 6D and 50 for 10D.
Observations are that, in the 6D test case, LVGP-BO and Lolo-BO show close efficiencies (Figure 3b). Whereas in the 10D
case, both BO methods have difficulties optimizing the function and get stuck for more than 20 iterations (Figure 3c); Lolo-BO
displays better convergence rate and final minimum objective value.

The Perm function is complex because of its non-convexity, and more significantly, its erratic behavior at the domain
boundary: the function value is growing nearly exponentially near the boundary. We test BO of the 10D Rosenbrock and
quadratic functions to investigate the influence of high dimensionality, without the erratic complexity. The Rosenbrock
function is also non-convex, but is well-behaved at the domain boundary. We define its input variables as following: numerical
variables x1,...,5 = v1,...,5 ∈ [−5,10], categorical variables t1 = v6 ∈ {−4,1,6}, t2 = v7 ∈ {−3,1,5,9}, t3 = v8 ∈ {−5,1,7},
t4 = v9 ∈ {−2,1,4,7}, t5 = v10 ∈ {±3,±1,5}, which make D f = 19. The quadratic function is convex and well-behaved.
It takes five categorical variables t1,...,5 = v6,...,10 ∈ {0,±1,±2} and five numerical variables x1,...,5 = v1,...,5 ∈ [−2,2], with
D f = 25. As Figure 3e–f shows, both BO methods make progress in descending the function value towards the optimum, while
LVGP-BO has a considerably faster convergence rate. Through these, we find that when the dimensionality of the problem is
high, convexity influence the comparison between LVGP-BO and Lolo-BO similarly to the low-dimensional situation. For the
three 10D functions, Lolo-BO displays consistent behavior of making slow progress; whereas when the function is ill-behaved
near the domain boundary, the efficiency of LVGP-BO decreases. In the Supplementary Information (SI), we present additional
test cases, which support the findings as well.

What Determines BO Performance?
We seek explanations for LVGP-BO and Lolo-BO’s performance differences from two aspects: fitting accuracy and uncertainty
estimation quality. For BO to successfully locate the global optimum, the ML model does not need to fit the response function
accurately everywhere, but the accuracy near the optimum matters. This accuracy can be improved with new sample acquisition
guided by uncertainty. In regions that are far from optimal, the quantity of data and the resulting prediction accuracy only
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need to be sufficient to confidently rule the region out as a promising design region, which is why uncertainty quantification is
important.

We select the Branin function as a representative, generate 10 initial samples following the same as described above, run 20
iterations of BO to acquire 20 more samples, and fit LVGP/Lolo models to the samples of sizes 10 and 30. In Figure 4 we show
the behaviors of LVGP and Lolo in fitting the mixed-variable Branin function. With a small training set, LVGP can attain better

Figure 4. Illustration of the behaviors of LVGP and Lolo fitting the Branin function, with 10 and 30 samples. Each panel plots
f (x, t) versus x for four fixed values of t, while different colors of curves indicate levels of t. Solid lines represent the true
function value, black dots are sample points in the training set, dashed lines are the predicted mean value, and shaded areas
show the uncertainty estimation (plus/minus one standard deviation). The global minimum function value is marked by dashed
lines.

prediction of the function compared to Lolo; moreover, its uncertainty quantification assigns low uncertainty in the vicinity of
known observations and high uncertainty in the regions where data are sparse. These enable well-directed sampling in the less
explored regions, hence promoting the model to “learn” the target function efficiently in regions where it matters most, i.e., in
the vicinity of the optimum. In SI, we show the sampling sequences of Lolo-BO and LVGP-BO optimizing the Branin function
to illustrate the difference between LVGP’s and Lolo’s uncertainty quantification and their effects on sample selection.

We conducted a similar fitting test for the Rastrigin function in 2D and show the results in Figure 5. For this more complex
function, both methods fail to attain a good fit with 20 initial samples. Despite this, LVGP gives a better estimation of uncertainty
in that it assigns higher uncertainty at the regions with sparser data points, which effectively guides the model towards a better
fit. With the training sample size increased to 60, however, LVGP can fit the fluctuating function more accurately than Lolo
(compare panels c and d), especially in the regions close to optimum, i.e., where the function values are low.

We next extend this fitting and UQ comparison to high-dimensional cases. Training samples are generated from the
10-dimensional quadratic function and the Perm function (Equation 9), respectively, then LVGP and Lolo models are tested to
accurately fit the samples. At high dimensions, the previous visualization is no longer feasible. Instead, we adopt the relative
root-mean-square error (RRMSE)

RRMSE =
RMSE

σy
=

√
∑i(ŷi− yi)2

∑i(yi− ȳ)2 (11)

as a metric of fitting quality. Note that RRMSE is related to another widely used metric, the coefficient of determination R2,
through R2 = 1−RRMSE2. RRMSE > 1 can happen when the fitted model is worse than using the response mean as a constant
predictor. For each function, we evaluate the model fitting quality by calculating RRMSE on 1,000 test samples generated
independently from the training samples. Figure 6a–b shows the RRMSEs across different training sample sets to indicate how
well the two models fit the mathematical functions. We also show in Figure 6c–d the deviations of the models’ predictions from
the true responses, i.e., the prediction errors.
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Figure 5. Illustration of the behaviors of LVGP and Lolo fitting the 2D Rastrigin function, with 20 (initial) and 60 (BO
expanded) samples. For clarity, we only show three levels of categorical variable t out of eleven in total.

Figure 6. a–b. Relative RMSE of fitting quadratic and Perm functions, using LVGP and Lolo models with varying training
sample sizes. Boxplots show results from 10 different randomly selected training sample sets. c–d. Regression plots showing
the true value (horizontal axis) and ML model-predicted value (vertical axis) for quadratic function (training size 50) and Perm
function (training size 100), with green diagonal lines representing accurate predictions.

As the figures show, in fitting the relatively simpler quadratic function, Lolo attains a higher quality compared to LVGP at
small sample size (50); as the sample size increases to 80, the fitting quality of LVGP improves significantly, whereas the fitting
quality of Lolo does not change much. However, even at a small sample size, LVGP’s prediction error for samples with low
function values (near optimum) is lower than Lolo’s. With well-directed uncertainty quantification, LVGP-BO can add samples
that improve the fitting, thus leading to efficient convergence.

In fitting the 10D Perm function, both functions fail to attain a good RRMSE; the Lolo model fits slightly better than LVGP,
and this comparison is not changed as the training sample size increases. In this case, the dimensionality is too large for the
known samples to cover, hence, it is difficult for both ML models to capture the complexity of the Perm function. Neither
model shows dominant fitting accuracy near optimum over another model. Lolo’s slightly better global fitting accuracy enables
it to display higher efficiency in BO of the Perm function.

Materials Design Applications
To assess the performances of two ML models in facilitating materials design, we apply Lolo-BO and LVGP-BO to optimize
materials’ properties using several existing experimental/computational materials datasets. We adopt a simple yet generally
applicable design representation, using chemical composition as design variables to optimize the properties. We start with
a small fraction of samples randomly selected from the dataset; the evaluation of a sample is imitated by querying its
corresponding property from the dataset. Model fitting and acquisition function follow the same procedure described in previous
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sections.

Moduli of M2AX Compounds
The M2AX materials family38 has a hexagonal crystal structure, in which M, A, and X represent different sites, M and X atoms
form a 2-dimensional network with the X atoms at the center of octahedra, while the A atoms connect the layers formed by M
and X. M2AX compounds display high stiffness and lubricity, as well as high resistance to oxidation and creeping resistance at
high temperatures. These properties make them promising candidates as structural materials in extreme-condition applications
such as aerospace engineering.39, 40 For both the capability as a structural material and the manufacturability, elastic properties
are of particular importance. However, elastic properties have nontrivial dependence on composition. The computational
determination of these properties includes the calculation of stresses or energies under several strains using density functional
theory (DFT)40, which is resource-intensive. Here we demonstrate how the design optimization of M2AX compounds’ elastic
properties directly in the composition space may benefit from mixed-variable BO while assessing the performances of Lolo-BO
and LVGP-BO.

From Balachandran et al.41, we retrieve a dataset that reports Young’s, bulk, and shear moduli (E, B, and G, respectively) of
223 M2AX compounds within the chemical space M∈{Sc,Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W}, A∈{Al,Si,P,S,Ga,Ge,As,Cd, In,
Sn,Tl,Pb}, X ∈ {C,N}. The input variable vvv is thus 3-dimensional, with all inputs being categorical. Since E and G are highly
correlated (shown in SI), we choose E and B as target responses and optimize them separately. Both optimizations start with 30
initial samples and run for 50 iterations, adding one sample per iteration.

In Figure 7, we show the value distributions and optimization histories for E and B. Both Lolo-BO and LVGP-BO are
capable of discovering the material that has optimal modulus within 20 iterations, significantly reducing the required resources
as compared to computationally evaluating the whole design space. Of the two BO methods, LVGP-BO exhibits marginally
higher rates of convergence in both tasks. As observed from a–b, the input–response relations of both E and B are relatively
well-behaved, without showing abrupt changes or clusters of values, which favors LVGP-BO’s efficiency. Hence, the results
here are consistent with the findings in the mathematical test cases.

Figure 7. a–b. Distributions of E and B values in the M–A space, fixing X = C. c–d. Optimization histories for c. Young’s
modulus and d. bulk modulus. e–g. Optimization histories of Eg with initial sample sizes 10 and 30, and ∆Hd with initial
sample size of 10. h. Scatter plot of bandgap–stability for all samples in the dataset.

Bandgap and Stability of Lacunar Spinels
In another materials design application case, we consider materials having the formula AMaMb

3X8 and the lacunar spinel crystal
structure42. Element candidates for the sites are A ∈ {Al,Ga, In}, Ma ∈ {V,Nb,Ta,Cr,Mo,W}, Mb ∈ {V,Nb,Ta,Mo,W},
X ∈ {S,Se,Te}. This is a family of materials that potentially exhibit metal–insulator transitions (MITs)43, i.e., electrical
resistivity changing significantly upon external stimuli, such as temperature change across a critical temperature. The MIT
property can be leveraged for encoding and decoding information with lower energy consumption compared to current
devices44. Hence, the AMaMb

3X8 materials family shows promise for next-generation microelectronic devices, including
neuron-mimicking devices which can accelerate ML45. The origin of the transition is structural distortion triggered by external

9/14



stimuli, which leads to a redistribution of electrons in the band structure46. Though the physical mechanism behind MITs
is complex, two relevant properties may serve as proxies for the performances of candidate materials. One is the bandgap
of the insulating ground state Eg, as a larger Eg generally corresponds to a higher resistivity in the insulating state, and
therefore a higher resistivity change ratio upon the phase transition to a metallic phase under the applied field. Another is the
decomposition enthalpy of the material ∆Hd which is associated with a material’s stability. Stable compounds are more likely
to be synthesizable and operable in novel devices. Therefore, we use these two properties corresponding to their functionality
and stability as the target in MIT materials design.

In a dataset collected by Wang et al.3, a total of 270 combinations of candidate elements are enumerated, for every
compound Eg and ∆Hd calculated from DFT are listed. Similar to the previous test case, we use the 4-dimensional (categorical)
composition as the inputs and optimize two responses Eg and ∆Hd separately. Figure 7e–g show the results: starting from 10
initial samples, LVGP-BO and Lolo-BO both discover the compound with optimal ∆Hd efficiently, but are relatively slow in
optimizing Eg; LVGP-BO shows better efficiency on ∆Hd while Lolo-BO shows better efficiency on Eg. When we increase the
initial sample size to 30, LVGP-BO and Lolo-BO exhibit similar efficiency on Eg.

We show the different characteristics of the two responses of the dataset by a scatter plot in Figure 7h. Among the 270
Eg values in the dataset, 56 are zero and others are positive values. These values form a clustered distribution at 0 and make
the target function Eg = f (vvv) ill-behaved. Combined with the high-dimensionality, this function becomes challenging for
LVGP-BO and Lolo-BO to optimize, as we demonstrated in the high-dimensional numerical examples. In contrast, ∆Hd values
form a relatively well-behaved target function, hence, LVGP-BO performs better on this task, also in agreement with previous
findings.

Investigating Machine Learning Performance
Though the response functions linking materials compositions to properties are black-box functions, for which the exact
behaviors are unknown, we investigate the fitting accuracy of two ML models to get a hint of their performance in BO. The
regression plots in Figure 8 show the test response predictions versus the true response values for the ML models fitted to training
data of size 30. Interestingly, for all four target properties, LVGP shows better prediction errors for the high-performance
(larger true response) materials, which are the candidates close to optimum. Aligning with the findings from mathematical
examples, this explains LVGP-BO’s edge in efficiency over Lolo-BO. Another observation worth noting is that, for the lacunar
spinels with zero bandgaps, LVGP’s predictions contain negative values, while Lolo’s do not (Figure 8c). This is because the
LVGP model using the RBF kernel tends to yield smooth response function predictions, which accounts for the influence of the
clustered behavior of the response function on LVGP-BO’s performance.

Figure 8. Regression plots for ML models trained on 30 samples for materials properties: a–b. bulk and Young’s moduli of
M2AX compounds; c–d. bandgap and stability of lacunar spinels.

Conclusion
In this study, we examine the fundamental differences between frequentist and Bayesian uncertainty quantification in ML
models. Thereafter, we systematically compare the efficiency and accuracy of BO powered by two representative mixed-
variable ML models in mathematical optimization as well as materials design tasks, and investigate the factors influencing BO
performances. In summary, an ML model’s fitting accuracy near the optimum and its uncertainty quantification quality are
found important to BO. For low-dimensional problems, the ML models can fit the input–response function relatively easily;
even if the function is highly complex, fitting quality can be improved by adding a small number of well-selected samples. In
this case, the quality of UQ becomes the key factor of BO efficiency, where LVGP using Bayesian uncertainty quantification
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has advantages. Whereas for high-dimensional problems, if the function is complex, it becomes challenging for ML models to
fit the function. The number of samples required for covering the input space and improving fitting quality also escalates due to
the curse of dimensionality. In this case, better fitting leads to better BO performance, and ML models that are more capable of
fitting complex functions (such as random forests) have advantages.

The results and analyses draw a suitability boundary for LVGP-BO and Lolo-BO, and more generally, provide insights for
understanding the difference between the two families of uncertainty-aware ML models they represent:

• When the design optimization problem is low-dimensional, or high-dimensional but the response is anticipated to be
relatively well-behaved, the LVGP model is recommended for BO.

• While for high-dimensional problems with a highly ill-behaved response function, we recommend using an ML model
that allows higher model complexity (e.g., random forest, neural network) with resampling UQ.

The results constitute a supplement to the previous studies covering BO with all numerical variables and guide the model
selection in materials design as well as other mixed-variable BO problems.

Methods
Bayesian Optimization
The optimization process starts with initial samples, i.e., an initial set of input variables, and evaluates the responses. A machine
learning model is then fitted with the known input–response data, which assigns for any input vvv a mean prediction ŷ(vvv) and
associated uncertainty (predicted variance) ŝ2(vvv). The model is used to make uncertainty-aware predictions for the unevaluated
samples V (sample pool). A new sample is selected therefrom based on the expected improvement (EI) acquisition function10:

vvv∗ = argmax
vvv∈V

EI(vvv), (12)

EI(vvv) = E[max{0,∆(vvv)}] = ŝ(vvv)φ
(

∆(vvv)
ŝ(vvv)

)
+∆(vvv)Φ

(
∆(vvv)
ŝ(vvv)

)
, (13)

where ∆(vvv) = ymin− y(vvv), the difference between the minimal response value observed so far and the mean prediction of the
fitted ML model; φ(·) and Φ(·) are the standard normal probability density function (pdf ) and cumulative distribution function
(cdf ), respectively. The new sample and corresponding response value are added to the known dataset. This process is repeated
iteratively, until the maximum number of iterations or some convergence criterion is reached.

Comparative Experiments
To compare the performances of Lolo and LVGP, we substitute them as the “ML Model” into the framework (Figure 1) and run
BO for a variety of functions, each time keeping the initial designs the same for BO with Lolo and LVGP. The initial designs are
generated quasi-randomly following a systematic approach: numerical variables are drawn together from a Sobol sequence47;
each categorical variable is obtained from shuffling a list where all categories appear equally frequently and at least once. Since
the stochasticity of initial samples influences the optimization process, we run multiple replicates of BO with different random
seeds for each test problem.

Uncertainty-Aware ML models
In these comparisons, we use the open-source implementation of Lolo48 in Scala language with the Python wrapper
lolopy, and a MATLAB implementation of LVGP, which implements the same algorithm as the open-source package coded in
R49. For hyperparameters of both models, we use the default settings: For Lolo, the maximum number of trees is set to the
number of data points, the maximum depth of trees is 230, and the minimum number of instances in the leaf is 1. For LVGP, we
use 2D latent variable mapping and the RBF kernel. Detailed settings are listed in the open-source packages.

Metrics for Problems Difficulty
We specify the following metrics to characterize the test problems and BO methods’ performance. The dimensionality of inputs
is an important criterion of problem difficulty. However, in categorical or mixed-variable cases, dimensionality is more than the
number of variables. A more useful index considered in this work is the degrees of freedom, which we define as

D f ≡ dim(xxx)+∑
i
[#levels(ti)−1] , (14)

where #levels(ti) yields the number of levels of ti. This quantity takes into account the number of levels for each categorical
variable. In other words, high dimensionality may mean “many levels” in problems with categorical variables. In the following
sections, we follow this definition to categorize problems with D f > 15 as high-dimensional, and others as low-dimensional.
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Another criterion of difficulty is the complexity of the objective function. In this work, we view the functions that display
the following characteristics as ill-behaved:

• rugged: the response fluctuates a lot, resulting in many local minima;

• erratic: the response value changes abruptly in certain regions;

• clustered: the response takes certain values frequently.

These characteristics make a function challenging for ML and global optimization, hence, we refer to them as “complex”
functions. Conversely, other well-behaved functions, including highly nonlinear ones, are referred to as “simple” functions.
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1 Uncertainty Quantification in Mixed-Variable ML
Two uncertainty-aware mixed-variable ML models, Lolo and LVGP, are illustrated in Figures S1 and S2, respectively.

FIG. S1: Illustration of the Lolo model. In the training stage, n decision trees are constructed. In the prediction stage,
for an input datapoint, each tree gives a prediction. Predicted mean and uncertainty are given by the mean value and
variance estimation among n trees’ predictions, respectively.

FIG. S2: Illustrations of Gaussian Process and LVGP models. (a) GP models assign prior distributions for y at various
x locations. Given training data, the posterior distribution of y provides uncertainty quantification. (b) LVGP model
assumes that levels of a categorical variable are characterized by underlying quantitative factors (represented as s).
Represented as points in a low-dimensional latent space, the distances between levels reflect their similarities in terms
of effect on the response.
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2 Mathematical Test Cases
Bayesian Optimization (BO) results of mathematical test functions included in the main text, with different initial
sample sizes: Branin function in Figure S3, and Camel function in Figure S4.

FIG. S3: Optimization history plots of the Branin function with initial sample sizes 50 (left) and 100 (right).

FIG. S4: Optimization history plots of the Camel function with initial sample sizes 50 (left) and 100 (right).

The Rastrigin function in 3-dimensional (1 categorical) and 4-dimensional (2 categorical) forms, with 30 initial
samples. Plots (Figure S5) are created from results of 10 runs with different random initial samples.
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FIG. S5: Optimization history plots of the 3D (left) and 4D (right) Rastrigin functions.

The Perm function in 6-dimensional form (1 categorical variable with 3 levels), starting from 80 initial samples.
Figure S6 is created from 10 runs.

FIG. S6: Optimization history plot of the Perm function.

The Holder Table function

f(x, t) = −
∣∣∣∣∣sin (x) cos (t) exp

(∣∣∣∣∣1−
√
x2 + t2

π

∣∣∣∣∣

)∣∣∣∣∣ , (1)

where x ∈ [−10, 10], and t ∈ {±10,±9, . . . , 0}. Plots (Figure S7) are created from 10 runs.
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FIG. S7: Optimization history plots of the Holder Table function with initial sample sizes 21 (left) and 50 (right).

The Ackley function

f(v) = −20 exp


−b

√√√√1

d

d∑

i=1

v2i


− exp

(
1

d

d∑

i=1

cos (cvi)

)
+ 20 + e, (2)

where e = 2.71828...; we set the dimensionality d = 3, with v1,2 = x1,2 ∈ [−32.768, 32.768], and v3 = t ∈
{±32,±31, ..., 0}. Figure S8 is created from 5 runs.

FIG. S8: Optimization history plot of the Ackley function with initial sample size 65.

The Cross-in-Tray function

f(x, t) = −0.0001
(∣∣∣∣∣sin (x) sin (t) exp

(∣∣∣∣∣100−
√
x2 + t2

π

∣∣∣∣∣

)∣∣∣∣∣+ 1

)0.1

, (3)

where x ∈ [−10, 10], and t ∈ {±10,±9, ..., 0}. Figure S9 is created from 10 runs.
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FIG. S9: Optimization history plot of the Cross-in-Tray function with initial sample size 21.

The Shubert function

f(x, t) =

(
5∑

i=1

i cos ((i+ 1)x+ i)

)(
5∑

i=1

i cos ((i+ 1)t+ i)

)
, (4)

where x ∈ [−10, 10], and t ∈ {±10,±9, ..., 0}. Figure S10 is created from 10 runs.

FIG. S10: Optimization history plot of the Shubert function with initial sample size 21.

Sampling path Figures that show the sampling sequences by LVGP-BO and Lolo-BO in optimizing the Branin
function are provided in a separate compressed file.

3 Materials Property Test Cases
Figure S11 showing the relations between Young’s, shear, and bulk modulus of M2AX compounds, indicate that
Young’s and shear moduli are highly correlated, while bulk modulus is not with the others.
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FIG. S11: Scatter plots of Young’s–bulk modulus (E–B) and Young’s–shear modulus(E–G).

Figure S12 shows the BO and ML fitting results for the shear modulus of M2AX compounds.

FIG. S12: Optimization history plot (left) and regression plot (right) ofM2AX shear modulus, with 30 initial samples.
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