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ABSTRACT

Metamaterials with functional responses, such as wave-based responses or deformation-induced
property variation under external stimuli, can exhibit varying properties or functionalities under
different conditions. Herein, we aim at rapid inverse design of these metamaterials to meet target
qualitative functional behaviors. This inverse problem is challenging due to its intractability and
the existence of non-unique solutions. Past works mainly focus on deep-learning-based methods
that are data-demanding, require time-consuming training and hyperparameter tuning, and are non-
interpretable. To overcome these limitations, we propose the Random-forest-based Interpretable
Generative Inverse Design (RIGID), a single-shot inverse design method to achieve the fast generation
of metamaterial designs with on-demand functional behaviors. Unlike most existing methods, by
exploiting the interpretability of the random forest, we eliminate the need to train an inverse model
mapping responses to designs. Based on the likelihood of target satisfaction derived from the trained
forward model, one can sample design solutions using Markov chain Monte Carlo methods. The
RIGID method therefore functions as a generative model that captures the conditional distribution
of satisfying solutions given a design target. We demonstrate the effectiveness and efficiency of
RIGID on both acoustic and optical metamaterial design problems where only small datasets (less
than 250 training samples) are available. Synthetic design problems are created to further illustrate
and validate the mechanism of likelihood estimation in RIGID. This work offers a new perspective on
solving on-demand inverse design problems, showcasing the potential for incorporating interpretable
machine learning into generative design and eliminating its large data requirement.
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1 Introduction

Metamaterials with functional responses are engineered materials that exhibit varying properties or behaviors under
different conditions. One example is metamaterials whose electromagnetic, acoustic, or elastic wave propagation
behaviors change with wavelengths or frequencies [1]. Another example is metamaterials that exhibit changing
properties or functionalities due to deformation in response to external stimuli like temperature [2] and magnetic
fields [3]. Tailoring functional responses of these metamaterials is of interest to applications such as sound and vibration
control, analog computing, medical imaging, sensing, communication, and soft robotics. In many use cases, rather
than precisely controlling the complete functional responses, we only care about qualitative behaviors under certain
conditions. For example, acoustic metamaterials were usually designed to have bandgaps at specified frequencies
to achieve functionalities like wave-guiding [4, 5], focusing [6, 7], and vibration mitigation [8, 9, 10]. However,
it is unnecessary and computationally expensive to design for the whole dispersion relation [11, 12, 13, 14, 15].
Similarly, we may design optical metamaterials to qualitatively manipulate optical properties (e.g., high or low
absorption/reflection/transmission) under certain wavelengths, without requiring the entire spectral response to match
an exact target [16, 17].

Identifying metamaterial designs from a given target forms an inverse design problem. Unlike many forward problems
where one can obtain solutions (e.g., spectral responses or material properties under external stimuli) by modeling
the physics or conducting experiments, inverse design problems are usually intractable. Traditionally, these problems
are solved by iterative optimization (i.e., minimizing the difference between the actual quantity of interest and the
target) [11, 12, 14]. This, however, requires repeatedly updating the design solution and solving forward problems.
When the design target changes, one needs to rerun the entire optimization process. Thus, inverse design by iterative
optimization becomes impractical if solving the forward problem (by simulations or experiments) is time-consuming
or if the design target needs to change frequently. To accelerate the optimization approach, prior works replaced
simulations or experiments with machine learning models [18, 19]. However, the efficiency and quality of final solutions
are highly dependent on both the machine learning model and the optimization algorithm. On the other hand, a single
run of optimization usually only returns one final solution, although multiple designs might satisfy a given target (i.e.,
the non-uniqueness of solutions). For example, multiple acoustic metamaterial designs may have bandgaps within
the same target frequency range. This non-uniqueness nature of inverse design problems was also shown for optical
metasurfaces [20, 21, 22]. The optimization approach eliminates the opportunity to explore diverse alternative solutions.

To avoid iterative optimization and enable fast on-demand inverse design, prior research attempted to realize single-shot
(iteration-free) inverse design using machine learning. There are three mainstream models (their schematic diagrams are
shown in Appendix, Fig. 7). The most straightforward approach is to learn a direct inverse mapping from the response
to design variables. Neural networks are the most commonly used machine learning model for this purpose, due to
their high flexibility in approximating arbitrary nonlinear input-output relationships [23, 13]. Despite the simplicity
of the direct inverse mapping, its underlying assumption of the response-design mapping being one-to-one does not
hold in many cases due to the non-uniqueness of solutions, as mentioned earlier. Such non-uniqueness will cause
conflicting training instances where the same input (response) is associated with distinct outputs (designs), which will
destabilize the convergence during neural network training [20, 24]. To avoid this issue, past work proposed the Tandem
Neural Network (T-NN) that cascades an inverse-design network with a forward-modeling network [20, 25, 26, 27, 28].
Its training is split into two steps: (1) pretraining the forward-modeling network to approximate the design-response
mapping and (2) training the cascaded network by freezing the weights of the pretrained forward-modeling network.
There is no loss function that forces designs at the intermediate layer to match data (which contains conflicting instances),
hence the training convergence issue is avoided. Nonetheless, the original T-NNs still learn a one-to-one response-design
mapping and cannot account for the non-uniqueness of design solutions. To fundamentally solve this problem, one
needs to learn a one-to-many mapping. Bastek et al. [28] integrated stochastic sampling into the inverse-design network
to allow the generation of multiple feasible solutions. A large body of recent works achieved the goal of learning
one-to-many mapping by using conditional generative models, typically conditional generative adversarial networks
(cGANs) [29, 30, 31, 32, 22], conditional variational autoencoders (cVAEs) [21], and conditional diffusion models [33].
These models can generate multiple designs given a target response by learning the distribution of designs conditioned
on the response. Different generative models have distinct ways of learning conditional distributions. In general, this
is realized by training neural networks to transform responses and random noise (or latent variables) into designs, so
that the trained network can generate a non-deterministic design solution from a given target response and randomly
sampled noise, which is equivalent to sampling from a conditional distribution.

Although conditional generative models have demonstrated success in solving inverse design problems, they still have
issues, such as high data demand, exhaustive hyperparameter tuning, slow training, and low interpretability, especially
compared to traditional machine learning models like decision trees and random forests. On the other hand, Elzouka
et al. [34] proposed to use the decision tree as a more interpretable model to solve both the forward prediction and
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inverse design problem. After training a decision tree for forward prediction, one can identify explicit design rules (i.e.,
feasible regions in the design space) by tracing from target leaf nodes to the root node. This approach also captures the
one-to-many mapping nature of inverse design problems since it gives feasible design variable ranges rather than a
single solution. However, there remain some limitations. Firstly, for solutions identified by the design rules, the method
does not differentiate their likelihood of target satisfaction. Yet in reality, solutions always have different likelihoods due
to the uncertainty of model estimation. Secondly, the method has to train two models: a random forest was trained first
to ensure model accuracy and robustness, and then a large decision tree was trained to emulate the performance of the
random forest and provide design rules. This is due to the challenge of deriving explicit design rules from an ensemble
model like the random forest. Finally, the method was demonstrated on a problem with more than 104 training data,
while the effectiveness on smaller datasets (i.e., data with orders of magnitude smaller sample sizes) was not studied.
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Figure 1: Schematic diagram of the RIGID method. We first train a random forest on a design-response dataset to learn
the forward design-response relation — predicting qualitative responses (e.g., bandgap existence at any given wave
frequency) of designs. Then given a design target, we can infer the likelihood of any design satisfying the target by
probing into the trained random forest. New designs with tailored responses can be generated by sampling the design
space based on the likelihood estimation.

This work aims to address the aforementioned problems by proposing a method called Random-forest-based Inter-
pretable Generative Inverse Design (RIGID). Figure 1 shows an overview of this method. Specifically, we first train
a forward prediction random forest. Then given a design target, we can probe the trained random forest to infer the
likelihood of any design satisfying the target. To generate new designs tailored to the target, we can sample from
the design space according to the likelihood. Compared to the most widely studied neural-network-based methods,
RIGID has a much lower cost in training and hyperparameter tuning, and works more robustly on small-size datasets
(as random forests are less prone to overfitting). Similar to deep generative models, it can generate a desired number of
solutions, allowing one to explore alternative solutions that might have desired properties or functionalities beyond
the ones considered as the target. The explicit likelihood estimation also offers an interpretable characterization of
a design’s target satisfaction probability and allows an exploitation-exploration trade-off when selecting generated
designs. We validate the RIGID method on two metamaterial design examples — an acoustic metamaterial design
example, where the target is to generate metamaterials with specific bandgaps, and an optical metasurface design
example, where the target is to generate metasurfaces with high absorbance at specified wavelengths.

Our contributions are three-fold. First, we propose a single-shot inverse design method that is fast, generative,
interpretable, and small-data-compatible. Secondly, we demonstrate the effectiveness of the proposed method on
acoustic and optical metamaterial design examples, and propose both qualitative and quantitative ways of assessing our
method. Finally, we create two synthetic test cases for fast examination and validation of model performance. These
test cases can be used for future benchmarking studies of related methods.

2 Methods

The functional response of metamaterials can be modeled as y = f(x, s), where x denotes metamaterial design
variables (e.g., materials and geometry parameters), s is an auxiliary variable representing the independent variable (or
the “x-axis”) of the response (e.g., the frequency/wavelength or the external stimuli such as temperature), and y indicates
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the value of the response associated with our design target. In this paper, we assume y ∈ {0, 1} since we only focus
on qualitative behaviors at specified frequencies (e.g., for an acoustic metamaterial or an optical metamaterial design,
whether a bandgap exists or whether the energy absorbance is higher than a threshold within a range of frequencies).
We leave the more challenging problem of tailoring quantitative behaviors as future work.

We use a random forest to approximate the function f . A random forest is an ensemble learning method that combines
the predictions of multiple decision trees to improve accuracy and reduce overfitting [35]. The trained random forest
serves as a forward prediction model that predicts the outcome y given design variables x and the auxiliary variable s.
Compared to the widely used neural networks, the random forest as a forward prediction model offers (1) significantly
faster training, (2) less hyperparameters to tune, (3) less susceptible to overfitting on small data, and (4) interpretability
(i.e., the decision-making of each tree in the random forest is transparent). More importantly, this interpretability also
allows us to realize inverse design without training a separate inverse model.

Target      : Generate acoustic metamaterials with bandgap(s) in 3-4 and 6-7 MHz frequency ranges
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Figure 2: The inverse design pipeline of the proposed RIGID method (using the inverse design of acoustic metamaterials
as an example). Given design parameters x and the auxiliary variable s (e.g., wave frequency), a trained random forest
predicts the probability of the qualitative response y (e.g., bandgap existence). Each tree in the random forest splits
the joint space of x and s into regions, each associated with a specific prediction (shown on leaf nodes). The splitting
criteria are encoded in tree nodes. “T” means meeting a criterion and “F” means not meeting it. RIGID first identifies
leaf nodes that are relevant to the considered range of auxiliary variable s by checking splitting criteria related to s and
pruning tree branches that are irrelevant (Step 1). If the considered range of s has multiple parts, we repeat this step for
each part and take the intersection of relevant leaves (Step 2). Each relevant leaf node corresponds to a decision path
indicating a region in the design space, as well as a predicted probability of target satisfaction, which is a score we
assign to the corresponding design space region (Step 3). With multiple trees in a random forest, we can average the
scores predicted by each tree and use the average score as our likelihood estimation (Step 4). We can then sample from
the design space based on the likelihood distribution to generate new designs tailored to the target (Step 5).
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Figure 2 shows how, by probing the trained random forest, one can estimate a likelihood distribution for target
satisfaction of solutions over the entire design space and sample (generate) new designs based on this likelihood
distribution. Since we target qualitative (binary) behaviors at specified s (e.g., a bandgap in 3-4 MHz frequency or high
absorption at a wavelength of 400-500 nm), we first identify the leaf nodes (on each decision tree in the random forest)
that are relevant to the s in the target (Fig. 2, Step 1). We do this by tracing down each tree, checking only the nodes
that use s as the splitting feature, and pruning the branches that are irrelevant to the s in the target. For example, as
shown in Fig. 2, there are two tree nodes using s as the splitting feature, with splitting criteria at s ≤ 5 and s ≤ 7.
Given the target frequency range of 3 ≤ s ≤ 4, we can remove the right branches of both nodes as these branches are
only relevant to s > 5 and s > 7, respectively, which conflicts with the target range of 3 ≤ s ≤ 4. After pruning these
branches, we end up with a set of leaves relevant to the target (highlighted in Fig. 2, Step 1). When we have a combined
target (e.g., bandgaps in both 3-4 MHz and 6-7 MHz, as shown in Fig. 2), we need to get the intersection of all the sets
of relevant leaves and use that as the final set of relevant leaves (highlighted in Fig. 2, Step 2). Note that a combined
target includes cases where there are multiple nonadjacent target ranges (e.g., 3-4 MHz and 6-7 MHz) or when a target
range is split by a tree node (e.g., a target range of 4-6 MHz can be split by the node “s ≤ 5”, thus we need to consider
it as the combination of two target ranges — 4-5 MHz and 5-6 MHz). A more detailed discussion of this step is in
Appendix, Sec. B.

The next step is to trace up the tree from the N relevant leaves, obtained by Step 2, to the root node (Fig. 2, Step 3).
This will result in N decision paths, along which are nodes indicating splitting criteria for design variables x. Thus,
each decision path represents a set of design variable ranges, or in other words, a region in the design space. We assign
each region a score equal to the predicted probability at each corresponding leaf. This probability is learned from the
training data and equals the proportion of positive data in a leaf. It indicates the tree’s belief in the probability of a
design x satisfying the target T if the design falls in the design space region corresponding to the leaf. Therefore, with
a single decision tree i, we already have the map of likelihood Lm(x|T ) = Pm(T |x) for target satisfaction: each of the
N regions has a uniformly distributed likelihood equal to the predicted probability at the corresponding leaf, and the
rest of the design space has a likelihood of 0 (Fig. 2, Step 3).

Since a single decision tree usually lacks accuracy, robustness, and a way to quantify estimation uncertainty, we still
want to take advantage of the random forest as an ensemble model for inverse design. We use Steps 1-3 to derive the
likelihood distribution for each of the M trees in the random forest, and simply use the average of these M likelihood
distributions as the final likelihood for target satisfaction, L(x|T ) =

∑M
m Lm(x|T )/M , which is a more complex and

smooth function (Fig. 2, Step 4). If more trees believe a design x has a higher likelihood of satisfying the target, then
the design will have a higher likelihood L(x|T ). Finally, to generate new designs, we can sample from L(x|T ) using
Markov chain Monte Carlo (MCMC) methods such as Metropolis-Hastings [36] (Fig. 2, Step 5).

Compared to prior works, RIGID provides the following unique benefits:

1. It is effective on small data problems as the random forest is less susceptible to overfitting.

2. The training is fast (in seconds of wall time) and does not require computationally-demanding hyperparameter
tuning. Once the training is done, no further training or iterative optimization is required to generate designs
for different targets.

3. The model is interpretable as one can easily probe the trained model to understand its reasoning behind any
decision-making.

4. It estimates the explicit likelihood of target satisfaction for every possible solution in the design space. Given a
design target of specific functional behavior, we can generate an unlimited number of solutions based on the
likelihood, allowing us to explore alternative solutions that might have desired properties or functionalities
beyond the ones considered as the target.

5. When generating design solutions, one can use a single parameter — the sampling threshold — to easily
tune the trade-off between exploitation (i.e., generated designs have higher chances of satisfying the target)
and exploration (i.e., generated designs cover a broader area of the design space), as we will demonstrate in
Results.

3 Results

We demonstrate our RIGID method on an acoustic metamaterial design problem, an optical metasurface design problem,
and two synthetic design problems. Based on a recent review article by Lee et al. [24] and other related works (e.g.,
[28]), existing single-shot inverse design methods were demonstrated on training data size ranging from 103 to 106 in
scale. Here we show that our method can work with much smaller-scale datasets (less than 250 training samples).
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For all the test problems, we used the same random forest hyperparameter settings and did not perform hyperparameter
tuning. Specifically, each random forest contains 1,000 trees with a minimum of 2 samples required to split an internal
node and a minimum of 1 sample required to be at a leaf node. Gini impurity [37] was used as the splitting criterion at
tree nodes. The train-test split ratio was 4:1. Since the positive/negative training data can be highly imbalanced (e.g., the
frequency ranges with bandgaps are much narrower than those without), we used the Synthetic Minority Over-sampling
TEchnique (SMOTE) [38] to over-sample the positive class. For all the case studies, the random forest training took
less than 10 seconds on an Intel Core i5-9300H CPU 2.4GHz and 8GB memory.

After training, we generate new designs by sampling from the resulting likelihood distribution using Metropolis-
Hastings. In practice, Metropolis-Hastings can generate identical samples, which provides no benefits for design
purposes. Thus in this work, we reject the designs identical to previous ones during sampling.

3.1 Applying RIGID to Design Acoustic Metamaterials with Target Bandgaps

Here we consider acoustic metamaterials that can control elastic wave propagation at ultrasound (MHz) frequencies.
Varying the microscale geometries of acoustic metamaterials changes the dynamic properties of a material, such as
bandgaps [10] (i.e., forbidden frequency ranges of a material) and wave propagation direction [4]. These materials
promise applications in waveguides [4, 5], lenses [6, 7], and vibration mitigation [9]. We present the braced cubic
design framework (Fig. 3A-B) as a method to tune the size and location of bandgaps (Fig. 3C). In particular, spherical
micro-inertia are added to the center and corner of a braced cubic unit cell with strut radius rstrut. Micro-inertia placed at
the center of the brace has radius rcenter while micro-inertia placed at the corner of the cubic unit cell has radius rcorner.

We randomly created 284 sets of geometric parameters x = (rstrut, rcenter, rcorner) with 4 ≤ rstrut ≤ 6.41, 0 ≤ rcenter ≤
20, and 0 ≤ rcorner ≤ 20 (unit: µm). The unit cell size was set at a = 60 µm. For each of these designs, we performed
Bloch-wave analysis to compute its acoustic dispersion relation. Bandgap location and width were extracted for each
design based on its dispersion relation.

Out of the 284 sets of design variables and bandgap data, we used 227 samples as training data. We first discretized
the entire frequency range into 100 intervals, and trained a random forest to predict bandgap existence y ∈ {0, 1} at a
specific interval s for a given design x. The trained model has a test F1 score of 0.82. The resulting confusion matrix
on test data is shown in Appendix, Tab. 1.

To test the inverse design capability of RIGID, we randomly created 10 targets, each containing 1-2 frequency ranges
in which bandgap(s) should exist. We generated 30 designs for each target by sampling from the resulting likelihood
distribution over the design space1. Bandgaps were identified from dispersion relations computed using Bloch-wave
analysis. Figure 3D shows the kernel density estimation (KDE) for the likelihood of the 300 generated designs,
conditioned on their target satisfaction. We use D and Dfeas to represent the complete set of generated designs and the
set of generated designs that actually satisfy the target, respectively. Then D\Dfeas denotes the set of generated designs
that cannot fulfill the target in reality. In an ideal scenario, all solutions in D would satisfy the target, which means
D = Dfeas, and their density profiles should coincide. However, this ideal scenario is not possible due to limited model
accuracy. Conveniently, the estimation of target satisfaction likelihood offers us an indicator of what solution is more
likely to violate the target. For a reasonable model, most designs in D\Dfeas should have low estimated likelihood values.
Consequently, the density of Dfeas’s likelihood is a result of shifting some of D’s density from left (low likelihood) to
right (high likelihood). This expectation aligns with the observation in Fig. 3D.

When sampling new designs or selecting solutions from generated designs, we can put a sampling threshold τ ∈ (0, 1)
on the likelihood values to filter out “less promising” solutions. To further examine model behavior and quantify how τ
affects the inverse design outcome, we define the following metrics:

Selection Rate =
|Dϕ≥τ |
|D|

,

Satisfaction Rate =
|Dϕ≥τ ∩ Dfeas|

|Dϕ≥τ |
,

Average Score =
1

|Dϕ≥τ |

|Dϕ≥τ |∑
i=1

qi,

(1)

where Dϕ≥τ is the set of generated designs with the likelihood of at least τ (i.e., the selected designs) and qi denotes the
percentage overlap between the target and the actual behavior of selected designs. The satisfaction rate evaluates how

1Note that it is possible for the likelihood to be zero everywhere in the design space when the model believes the target is
unachievable. We ignore these cases as it is meaningless and impossible to sample designs from such likelihood distribution.
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Figure 3: Acoustic metamaterial design problem configuration and results. (A) Design variables of center and corner
mass radii (rcenter and rcorner) and strut radius (rstrut). (B) High symmetry points of the cubic irreducible Brillouin zone.
(C) A sample dispersion relation and bandgap (marked by the highlighted zone). The design objective is to generate
new acoustic metamaterial designs with target bandgaps. (D) KDE of the estimated likelihood for generated designs.
(E) Validation metrics under varying sampling thresholds. (F) Geometries and corresponding dispersion relations of five
generated designs with the highest likelihood of satisfying a specified target bandgap (marked as highlighted frequency
regions). Here only the fourth design fails to meet a small portion (at around 6 MHz) of the target bandgap, whereas the
others meet it. Generated designs for other targets are shown in Appendix, Figs. 8-10.

many selected designs satisfy the target based on a binary criterion (i.e., whether or not a design satisfies the complete
target), whereas the average score provides a soft measure where partial satisfaction is also counted. The average score
is lower-bounded by the satisfaction rate.

As shown in Fig. 3E, the selection rate decreases when τ increases since more solutions are filtered out. On the other
hand, both the satisfaction rate and the average score increase with τ , which indicates a high correlation between the
estimated likelihood of a solution and its probability of actually achieving the target. As τ reaches 0.6, the satisfaction
rate and the average score reach 1, indicating that all generated designs satisfy their targets. When sampling or selecting
new solutions, we can use the sample threshold τ to tune the trade-off between exploitation and exploration — a low τ
favors exploration as sampled solutions will cover a larger area of the design space, while a high τ favors exploitation
as sampled solutions will have a higher chance of satisfying the target.

Figure 3F visualizes the geometries and dispersion relations of designs generated based on a randomly created bandgap
target. Only the top five designs with the highest likelihood values are shown. In this example, our method generates
geometrically different designs that have a high probability of achieving target bandgaps, each yielding a slightly
different dispersion relation. This is promising in design applications requiring other material properties, such as
dynamic wave velocity or quasi-static stiffness, in which the user can select from a menu of designs with the same
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target bandgap but other varying properties. Generated designs based on the other nine bandgap targets can be found in
Appendix, Figs. 8-10.

3.2 Applying RIGID to Design Optical Metasurfaces with Target High-Absorbance Wavelengths

Optical metasurfaces are artificially engineered systems that can support exotic light propagation building on subwave-
length inclusions [39, 40, 41, 42, 43, 44]. Among a diverse array of devices, metamaterial absorbers [45, 46, 47, 48, 49,
50, 51] have been intensely studied for medical imaging, sensing, and wireless communications.

In this case study, we consider four types of cross-sections (c ∈ {1, 2, 3, 4}) chosen from the literature (Fig. 4B). It is
assumed that a 3D geometric instance is composed of a stack of three layers of prismatic unit cells, each of which is
vertically extruded and stacked (Fig. 4A). The geometries constructed in this way can be regarded as an instantiation of
multilayered metasurfaces [52, 53, 54, 55, 56], which offer richer design freedom than the single-layer counterpart. The
height of each layer (hl, l = 1, 2, 3) is allowed to continuously vary between 50 and 150 nm. Herein we do not consider
parametric variations of a given type of unit cell cross-section; yet those can be trivially incorporated in the proposed
design framework if necessary.
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Figure 4: Optical metasurface design problem configuration and results. (A-B) Design variables (materials, layer heights,
and cross-section geometry types). (C) A sample absorbance spectrum and the wavelength intervals (highlighted
wavelength regions) corresponding to absorbance above the threshold t. The design objective is to generate new
optical metasurface designs that exhibit higher absorbance than a threshold t at the user-defined wavelength interval(s).
(D) KDE of the estimated likelihood for generated designs. (E) Validation metrics under varying sampling thresholds.
(F) Designs (geometries and material selections) and corresponding absorbance spectra of five generated metasurfaces
with the highest likelihood of satisfying specified target high-absorbance regions (marked as highlighted wavelength
regions). Here all five designs satisfy the target. Generated designs for other targets are shown in Appendix, Figs. 11-12.

We also design the material of each layer (ml, l = 1, 2, 3). Three dielectric materials of interest, each of which is
assigned to a different color in Fig. 4A, are Ti (red), Si (blue), and Ge (yellow). In general, a dielectric material is
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characterized through a complex refractive index ñ ∈ C defined as ñ = n+ jk, where j =
√
−1 is the imaginary unit,

n ∈ R involves the speed at which the light propagates through the material, and k ∈ R is the extinction coefficient that
dictates the energy loss due to the material. Within the frequency regime of interest, those exhibit nonlinear dispersion;
both the real and imaginary terms in general are a non-analytic function of excitation wavelength s, i.e., n(s) and k(s).
In addition, the impact of the same material choice on the spectral response A(s) varies depending on the layer location
at which the material is placed. Thus the highlight of this case study is the combinatorial nature of design, whose
spectral responses are affected by the joint contributions of geometry and material.

Based on the above configuration, we randomly sampled 258 sets of design variables x = (c, h1, h2, h3,m1,m2,m3)
and computed their corresponding absorbance spectra using wave analysis. We set t = 0.9 as the absorbance threshold,
so that “high” absorbance means the absorbance A(s) is no less than 0.9. We trained a random forest on 206 training
data (i.e., 80% of the 258 designs and corresponding absorbance spectra) to predict whether “high” absorbance is
presented (i.e., the binary indicator y = 1) at a wavelength s for a given design x. The trained random forest has a test
F1 score of 0.83. The confusion matrix on test data is shown in Appendix, Tab. 2.

Note that this problem involves inverse design with both continuous and categorical variables, which common optimiza-
tion and generative modeling-based inverse design cannot handle well without special treatment [57, 58, 59]. On the
other hand, our random forest-based method can naturally address such mixed-variable problems without any issues.

Similar to the acoustic metamaterial design problem, we use 10 randomly created targets to evaluate the inverse design
performance of RIGID, except that here a target is represented as the wavelength range(s) within which absorbance
should be at least 0.9. We generated 100 designs for each target by sampling from the estimated likelihood distribution.
Among the 1,000 generated solutions, we successfully conducted wave analysis for 911 designs and obtained their
absorbance spectra. Figure 4D shows the KDE for the likelihood of these 911 designs, conditioned on their target
satisfaction. The densities share similar behavior as in the acoustic problem (Fig. 3D) —unsatisfied/infeasible designs
D\Dfeas are concentrated at low likelihood regions, which causes the likelihood density of satisfied/feasible designs
Dfeas to be a result of shifting some of D’s density from left (low likelihood) to right (high likelihood). The sampling
threshold and metrics relation shown in Fig. 4E also follow the same trend as in the acoustic problem (Fig. 3E), which
again demonstrates a strong positive correlation between the estimated likelihood and the probability of generated
designs actually achieving their targets.

Figure 4F shows generated optical metasurface designs with the top five likelihood estimations for a randomly created
target. While the materials, cross-section geometries, and layer heights of generated designs can be different, all the
designs satisfy the target (Fig. 4F, right panel). To further enhance the diversity of final solutions, we can use sampling
strategies such as the one proposed in Ref. [60, 61] to identify a subset (of generated solutions) that simultaneously
exhibits high likelihood and high diversity. Generated designs based on the other nine targets can be found in Appendix,
Figs. 11-12.

3.3 Synthetic Design Problems for Rapid Validation and Visualization

While the above metamaterial design problems represent practical use cases, the validation study is time-consuming
due to the expensive computation of metamaterials’ responses such as dispersion relations and absorbance spectra. To
allow fast validation of the proposed method and easier inspection of the estimated likelihood in the design space, we
create two synthetic case studies. Both problems have 2-dimensional “design spaces” that allow easy visualization.

SqExp Problem To construct the first synthetic problem, we used a squared exponential function with tunable
parameters a and b to mimic the quantitative functional response of metamaterials. The qualitative response (e.g., “high”
or “low” energy absorption at a wavelength) is defined as:

I(a, b; s) =

0, if z = exp

(
−
(

s−a
0.3b+0.1

)2
)

< t

1, otherwise
, (2)

where z represents quantitative response and t is a threshold that converts z into a qualitative response I(a, b; s). Specif-
ically, I(a, b; s) = 1 can mean the existence of a bandgap or high absorbance at a frequency s. Then {s|I(a, b; s) = 1}
represents a range of s that mimics our design targets, such as the bandgap or the frequency range of high absorbance.
By varying a and b, we can produce different synthetic responses and ranges. Therefore, we can use a and b as synthetic
design variables. There is a clear relation between these design variables and the range that Eq. 2 creates — a and b
control the center location and the width of the range, respectively.

In this design problem, we sampled 100 sets of a and b uniformly at random. We set t as 0.9. Based on Eq. 2, we
obtained the corresponding responses (Fig. 5A). These sets of a, b, and responses constitute a dataset for training and
testing our model.
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Figure 5: Synthetic data creation for (A) the SqExp problem and (B) the SupSin problem. For each problem, the left
panel shows 100 functions with randomly sampled parameters a and b. We treat a and b as synthetic design variables,
and the corresponding functions as quantitative responses (e.g., absorbance spectra of optical metasurfaces). The right
panel shows qualitative responses (e.g., high-absorbance wavelength ranges or bandgaps) are simulated by synthetic
ranges, derived by thresholding the 100 functions (Equations 2 and 3 with threshold t=0.9).

SupSin Problem Another synthetic design problem was constructed by replacing the squared exponential function
in the SqExp problem with a superposed sine function. Given synthetic design variables a and b, we can produce
qualitative responses using the following equation:

I(a, b; s) =

{
0, if z = sin (2π(s+ a)) + sin (3π(s+ b)) < t

1, otherwise
. (3)

Same as in the SqExp problem, we set t = 0.9 and created a dataset with 100 sets of synthetic design variables
and corresponding ranges derived from synthetic responses (Fig. 5B). Unlike the squared exponential function, the
superposed sine function can be multimodal, which means it can result in multiple synthetic ranges to mimic, for
example, multiple bandgaps. The bandgap locations are controlled by a and b.

For each synthetic example, we split the data into 80 training data and 20 test data, and trained a random forest, with the
same hyperparameter settings as the other problems, to predict the binary indicators I(a, b; s). The F1 scores are 0.85
and 0.86 for the SqExp and the SupSin problems, respectively. The resulting confusion matrices are shown in Appendix,
Tables 3-4. We evaluated the inverse design performance with the trained models.

Due to the fast evaluation of Equations 2 and 3, we can exhaust all the possible solutions in the design space to obtain
the ground-truth feasible region(s) for a target. Figure 6A shows the estimated likelihood values and the ground-truth
feasible regions under randomly created targets. In general, high-likelihood regions match actual feasible regions well,
which further demonstrates the effectiveness of RIGID. We can also observe that feasible regions in the SqExp and the
SupSin problems follow distinct patterns. In the SqExp problem, a and b control the center location and the width of the
output range, respectively. Therefore, the position of the feasible region along the a-axis moves with the location of the
target range, while the feasible region gradually shrinks as b decreases since the decrease of b (i.e., output range width)
causes the choice of a (i.e., output range center location) to be more restricted to fit the target range. In the SupSin
problem, there might be multiple bandgaps appearing at the peaks of the superposed sine function in Eq. 3. Design
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Figure 6: Visualization of estimated likelihood and validation metrics for synthetic problems. (A) Likelihood function
values for randomly created design targets. Orange lines show boundaries of actual feasible regions associated with
the targets. (B) Likelihood function values estimated by random forests with varying numbers of decision trees. The
design target is set as {[0.45, 0.48]} for the SqExp problem and {[0.63, 0.68], [0.69, 0.71]} for the SupSin problem.
(C) Validation metrics for inverse design generation.
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variables a and b control bandgap locations by translating each sine function. Due to the sine function’s periodicity, we
can obtain multiple feasible regions along both a- and b-axes. Figure 6A shows that the likelihood estimation by RIGID
successfully captured the above-mentioned patterns of feasible regions.

Figure 6B demonstrates how the estimated likelihood varies when increasing the number of trees in a random forest.
With a single decision tree, the estimated likelihood function is almost a binary function and highly inaccurate. The
likelihood in the SqExp case is even zero everywhere, which makes it impossible to sample designs based on the
likelihood. As the number of trees increases, the likelihood function becomes smoother and eventually converges.

Besides these qualitative visual inspections, we also calculated the metrics proposed in Eq. 1, as shown in Fig. 6C. For
each of the two synthetic problems, these metrics were computed on 500 designs generated by giving five random target
ranges. Again, the satisfaction rate and the average score increase with the sampling threshold, indicating a strong
correlation between the sampling threshold and the probability of generated designs actually achieving their targets. In
both problems, all the selected designs satisfy their targets (i.e., the satisfaction rates and average scores reach 1) when
the sampling threshold reaches 0.8.

4 Summary and Outlook

We proposed RIGID, a single-shot inverse design method that generates metamaterials to satisfy qualitative behaviors
of functional responses. Such qualitative behaviors are important design targets in many applications such as tailoring
bandgaps of acoustic metamaterials for wave-guiding, focusing, and vibration mitigation, or tailoring the absorption
level of optical metasurfaces at certain wavelengths for medical sensing, imaging, and communication applications.
Unlike most existing inverse design methods that require training an inverse model to map targets to designs, the
RIGID method takes advantage of the random forest’s interpretability and derives the likelihood of target satisfaction
by probing the trained forward model. Incorporated with MCMC, one can sample a desired number of new designs
based on the estimated likelihood. Therefore, RIGID functions as a generative model that can capture the conditional
distribution of satisfying designs given a target, or in other words, the one-to-many mapping from the target to satisfying
designs. Using both real-world and synthetic design problems, we demonstrated that RIGID is efficient and effective
on datasets with training sample sizes smaller than 250. Thus, RIGID is particularly useful when data collection is
expensive, as in many cases where high-fidelity simulation or experimental data are needed. We used both qualitative
and quantitative approaches to validate the proposed method. The quantitative results revealed a strong correlation
between the estimated likelihood of a solution and its probability of actually achieving the target, which demonstrated
the effectiveness of the likelihood estimation. Due to the fast evaluation of output responses and the transparency of
ground-truth solutions, the proposed synthetic problems can be used for future benchmarking studies of metamaterial
design problems.

While we address qualitative design targets in this study, the idea of using random forest-based models for inverse
design has the potential to generalize to quantitative targets. Such problems can be, for example, generating optical
metasurface designs with specific optical spectra [62, 21], generating functional materials with target nonlinear
constitutive relations [33, 63], or generating programmable metamaterials with prescribed functional responses [64, 65].
It is also straightforward to adjust the target to achieve multifunctionality (e.g., negative/positive Poisson’s ratio under
low/high compression rate [66]).

Although this study only demonstrates the RIGID method on parametric design (i.e., designs are represented by
geometric and/or material parameters), the method also applies to shape or topological design problems where the shape
or topology of designs can vary without being restricted to a limited number of geometric parameters [62, 29, 21, 31, 67].
In those cases, as valid designs only lie on a lower-dimensional manifold of the design space, the likelihood of target
satisfaction will be zero almost everywhere in the original design space. Thus before applying RIGID, we need to obtain
a latent representation that compactly captures the manifold of valid designs [68, 69], and use the latent representation
as design variables for inverse design.
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Appendices
A Related Works on Single-Shot Inverse Design

Figure 7 shows the schematic diagrams of three mainstream machine learning models for single-shot inverse design of
metamaterials.

Design

Response

(a) Direct Inverse Mapping (b) Tandem Neural Network

Design

Response
Predicted 

Response

Pretrained Forward Network

(c) Conditional Generative Model

(only showing generation network)

Response

Noise or 

Latent 

Variables
Design

Figure 7: Three major machine learning models for single-shot inverse design. Note that these are only conceptual plots
and the networks can be more complicated in reality. Also, due to the diversity and complexity of conditional generative
model architectures, we only show the network for design generation based on commonly used models (e.g., generators
in cGANs or decoders in cVAEs), while omitting networks that are necessary for training (e.g., discriminators in cGANs
or encoders in cVAEs).

B Explanation of Step 2 in RIGID

The purpose of Step 2 is to obtain the intersection of relevant design space regions for all the ranges of s in a target. We
are approximating this goal by simply obtaining the intersection of relevant leaves. However, some non-intersecting
leaves may still have intersecting design space regions. When assigning the probability to the intersecting region of
two non-intersecting leaves A and B, we need to consider the predicted probabilities at both leaves (PA and PB).
Specifically, the assigned probability at this intersecting region should be PAPB , which can be small. Therefore, we
adopt the simplification of only considering the intersection of relevant leaves and ignoring the intersecting regions
associated with non-intersecting leaves. The results also demonstrate that this is a reasonable approximation.
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C Computational Methods for Data Collection and Validation

C.1 Computation of Acoustic Dispersion Relations

We performed Bloch-wave analysis in COMSOL Multiphysics to compute the dispersion relations of acoustic metama-
terials. Poisson’s ratio of 0.49, Young’s modulus of 2.7 GPa, and density of 1170 kg/m3 were set as material properties
with ∼ 1.5× 104 mesh elements per unit cell. We used Floquet-Bloch periodic boundary conditions to obtain the first
60 eigenfrequencies along all symmetry domains of the cubic irreducible Brillouin zone (Fig. 3B) for all lattices, thus
generating a dispersion relation.

C.2 Computation of Optical Absorbance Spectra

We computed the absorbance spectra for optical metasurfaces using wave analysis inspired by Zhang et al. [56]. The
RF Module of COMSOL Multiphysics® [70] was used to evaluate the spectral response of concern, which is the
energy absorbance A(s) in the visible regime (380-700 nm). An absorbance spectrum is computed with respect to 33
wavelength components sk that are uniformly discretized over the specified range. An incident plane wave is assumed
to be given from the port, located at the top face of the analysis domain. We set the periodicity of the analysis domain
as 400 nm. The periodic boundary condition on electromagnetic fields is imposed on the lateral faces of the analysis
domain. A substrate made of SiO2 is placed right below a given unit cell instance (the black layers in Fig. 4A-B). With
full electric fields computed through the wave analysis, the energy absorbance at a single wavelength s is quantified as
A(s) = 1− |S11(s)|2, where Sij is the component of the S-parameter matrix that specifies energy transfer between
ports. We use the data presented in Ref. [71] to set the material dispersion of the dielectric.

D Test performance of forward prediction

Test data for all the design problems are designs x (that the random forests have never seen during training) and their
corresponding qualitative behaviors y ∈ {0, 1} based on functional responses.

In the acoustic metamaterial design problem, we have 57 test designs, yielding 5,700 test points as the entire frequency
range of dispersion relations is discretized into 100 intervals for each design. In the optical metasurface design problem,
we have 52 test designs, with each functional response discretized into 33 points, which yields 1,716 test points in total.
In each of the synthetic design problems, we have 20 synthetic test designs, with each synthetic response discretized
into 100 points. This results in 2,000 test data points in total. Confusion matrices showing test performances are in
Tables 1-4.

Table 1: Confusion matrix on test data in the acoustic metamaterial design problem. The test F1 score is 0.82.

Predicted

Yes No

A
ct

ua
l Yes 393 131

No 46 5130

Table 2: Confusion matrix on test data in the optical metasurface design problem. The test F1 score is 0.83.

Predicted

Yes No

A
ct

ua
l Yes 776 157

No 151 632

E Generated Designs and Corresponding Responses

Figures 8-12 show the rest of generated designs and their corresponding responses in addition to those in Figures 3F
and 4F.
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Figure 8: Geometries and corresponding dispersion relations of generated acoustic metamaterial designs for bandgap
targets II-IV (marked as gray-shaded frequency regions). Each row shows five designs with the highest likelihood of
satisfying a target.
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Figure 9: Geometries and corresponding dispersion relations of generated acoustic metamaterial designs for bandgap
targets V-VII (marked as gray-shaded frequency regions). Each row shows five designs with the highest likelihood of
satisfying a target.
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Figure 10: Geometries and corresponding dispersion relations of generated acoustic metamaterial designs for bandgap
targets VIII-X (marked as gray-shaded frequency regions). Each row shows five designs with the highest likelihood of
satisfying a target.
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Figure 11: Designs and corresponding absorbance spectra of generated optical metasurface designs for design targets
II-VI (marked as gray-shaded wavelength regions). Each row shows five designs with the highest likelihood of satisfying
a target (left panel) and their absorbance spectra (right panel).
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Figure 12: Designs and corresponding absorbance spectra of generated optical metasurface designs for design targets
VII-X (marked as gray-shaded wavelength regions). Each row shows five designs with the highest likelihood of
satisfying a target (left panel) and their absorbance spectra (right panel).
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Table 3: Confusion matrix on test data in the SqExp problem. The test F1 score is 0.85.

Predicted

Yes No

A
ct

ua
l Yes 229 68

No 13 1690

Table 4: Confusion matrix on test data in the SupSin problem. The test F1 score is 0.86.

Predicted

Yes No

A
ct

ua
l Yes 355 81

No 37 1527
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