
PcDGAN: A Continuous Conditional Diverse Generative
Adversarial Network For Inverse Design

Amin Heyrani Nobari
Massachusetts Institute of Technology

Cambridge, MA, USA
ahnobari@mit.edu

Wei Chen
Siemens Corporate Technology

Princeton, NJ, USA
chen.wei@siemens.com

Faez Ahmed
Massachusetts Institute of Technology

Cambridge, MA, USA
faez@mit.edu

ABSTRACT
Engineering design tasks often require synthesizing new designs
that meet desired performance requirements. The conventional de-
sign process, which requires iterative optimization and performance
evaluation, is slow and dependent on initial designs. Past work has
used conditional generative adversarial networks (cGANs) to enable
direct design synthesis for given target performances. However,
most existing cGANs are restricted to categorical conditions. Recent
work on Continuous conditional GAN (CcGAN) tries to address
this problem, but still faces two challenges: 1) it performs poorly
on non-uniform performance distributions, and 2) the generated
designs may not cover the entire design space. We propose a new
model, named Performance Conditioned Diverse Generative Adver-
sarial Network (PcDGAN), which introduces a singular vicinal loss
combined with a Determinantal Point Processes (DPP) based loss
function to enhance diversity. PcDGAN uses a new self-reinforcing
score called the Lambert Log Exponential Transition Score (LLETS)
for improved conditioning. Experiments on synthetic problems
and a real-world airfoil design problem demonstrate that PcDGAN
outperforms state-of-the-art GAN models and improves the condi-
tioning likelihood by 69% in an airfoil generation task and upto 78%
in synthetic conditional generation tasks and achieves greater de-
sign space coverage. The proposed method enables efficient design
synthesis and design space exploration with applications ranging
from CAD model generation to metamaterial selection.

KEYWORDS
Generative Adversarial Network, Engineering Design, Diversity,
Determinantal Point Processes, Inverse Airfoil Design

ACM Reference Format:
Amin Heyrani Nobari, Wei Chen, and Faez Ahmed. 2021. PcDGAN: A Con-
tinuous Conditional Diverse Generative Adversarial Network For Inverse
Design. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3447548.3467414

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8332-5/21/08.
https://doi.org/10.1145/3447548.3467414

1 INTRODUCTION
Engineering design applications often aim to synthesize a set of de-
signs that are diverse and meet specific performance requirements.
Designers, therefore, regularly spend significant time exploring
the design space (i.e., the space of all possible design options) to
find desired solutions. In the process, they have to repetitively
evaluate numerous options, often using physics-based simulation
models, and make adjustments depending on how a design meets
each requirement. The engineering design community has made
huge efforts in accelerating or eliminating this tedious trial-and-
error design cycle. For example, topology optimization [4, 13] and
adjoint-based optimization [3] are commonly used in structural
design and aerodynamic design, respectively. These methods ex-
clude humans from the design cycle and can automatically generate
solutions based on performance requirements. However, they are
still time-consuming due to expensive design evaluations (i.e., usu-
ally through finite element analysis or computational fluid dynam-
ics simulation). Also, those methods require differentiable physics
solvers so that gradients can be evaluated for each design option
in the design optimization process. This makes it impossible to
apply those methods to scenarios where performance is evaluated
by non-analytical models (e.g., experiments or expert assessments).
This brings up a question: can we skip the trial-and-error process
or the expensive simulations and obtain a design that satisfy any
given performance requirements? This is a so-called inverse design
problem.

To solve this problem, recent work has also looked at data-driven
methods such as conditional deep generative models [1, 25]. Deep
generative models like generative adversarial networks (GANs) [14]
and variational autoencoders (VAEs) [17] are often good at learning
the complex distribution of existing designs. This allows designers
to quickly synthesize new designs by sampling from that distri-
bution. By using models like conditional GANs (cGANs) [19] or
conditional VAEs (CVAEs) [22], it is possible to condition the syn-
thesized designs on arbitrary performance requirements, and thus
completely eliminate the tedious trial-and-error process and the
expensive simulations.

Recent developments in conditional deep generative models have
proven successful in many different generative tasks like image
generation, where the conditions are usually categorical class la-
bels. This assumption is impractical in many engineering design
settings since performance is usually continuous. For example, in
turbine design, some important performance metrics are the power
coefficient, the pressure coefficient, and the cavitation number [23];
in aerodynamic design, performance is measured by lift to drag
ratio or inverse lift coefficient [8]; in beam design, common metrics
are compliance and natural-frequency [2] —these metrics are all

ar
X

iv
:2

10
6.

03
62

0v
1

 [
cs

.L
G

]
 7

 J
un

 2
02

1

https://doi.org/10.1145/3447548.3467414
https://doi.org/10.1145/3447548.3467414
https://doi.org/10.1145/3447548.3467414

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

continuous variables. To use those metrics as the condition in con-
ditional generative models, past work [1, 25] proposes to discretize
the continuous values of the metrics to discrete bins. However,
this approximation leads to poor learning, as the labels lose or-
der information given their values will be rounded to the nearest
bin. To overcome these limitations, researchers have recently pro-
posed methods for conditioning GANs in continuous spaces. The
state-of-the-art method is the continuous conditional GAN (Cc-
GAN) [11]. However, though it demonstrates good performance
on computer vision applications, it is not sufficient for engineering
settings, where 1) the condition satisfaction is much more strict
and 2) the diversity of synthesized designs is highly encouraged.

In this paper, we propose a new GANmodel, named Performance
conditioned Diverse Generative Adversarial Network (PcDGAN),
which has twomain objectives: 1) to generate design candidates that
have a good coverage of the entire design space, i.e., to maximize
the diversity of the generated samples, and 2) to generate design
candidates which meet any given scalar performance requirement.
We achieve these objectives by combining a conditioning-driven
determinantal point processes (DPP) loss to capture sample diver-
sity and promote conditioning on top of a new loss term, which
we name singular vicinal loss, to further capture the conditioning
performance. We show that PcDGAN not only allows efficient de-
sign synthesis given continuous conditions (i.e., requirements on
continuous performance metrics), but also ensures a good coverage
of the design space, despite facing data sparsity problem. PcDGAN
is able to drastically improve the pace at which automated design
space exploration for specific tasks can be accomplished. In this
paper, we describe the key innovations in PcDGAN and show that
PcDGAN is capable of outperforming the current state-of-the-art in
continuous conditioning of GANs (i.e., CcGAN) in design synthesis
applications. We summarize main contributions as follows:

(1) We propose a novel discriminator loss, the singular vicinal
loss, and combine it with a DPP loss to promote conditional
diversity. We demonstrate that the proposed loss improves
the diversity score by an average of 14% compared to Cc-
GAN in an airfoil generation task and 21% in a synthetic
imbalanced conditional generation task.

(2) We introduce a novel scoring function, the Lambert log expo-
nential transition score (LLETS), and incorporate it into the
DPP loss to ensure accurate conditioning. We demonstrate
that this scoring function improves the conditioning likeli-
hood score by 69% in an airfoil generation task and upto 78%
in synthetic conditional generation tasks.

(3) We propose the integration of regression estimators (neural
networks-based or exact) into the process of conditioning in
continuous spaces, which to the best of the authors’ knowl-
edge is the first model to do so.

(4) We apply the proposedmethod on a real-world inverse airfoil
design problem and show that PcDGAN overcomes the issue
of severe imbalances in the data labels and outperforms state
of art CcGAN method on diversity and conditioning metrics,
while also having lower variation across different runs.

2 BACKGROUND AND RELATEDWORK
In this section, we provide a concise background on two topics
explored in this work: conditional generative adversarial networks
and determinantal point processes.

2.1 Continuous Conditioning of Generative
Adversarial Networks

The conditional GAN (cGAN) [19] learns the distribution of samples
conditioned on some auxiliary information. Such information is
usually the class labels of images, which are categorical variables.
Ding et al. [11] proposed the continuous conditional GAN (CcGAN)
to address the challenges in cGAN when the conditions are contin-
uous labels. One challenge is that cGAN’s empirical loss function
relies on a large number of samples for each distinct condition as
empirical risk minimization (ERM) approaches often do [24]. This
makes it unsuitable for conditioning in continuous spaces where
some labels may have few or even no samples associated with them.
To address this, CcGAN uses a novel loss function for the discrimi-
nator called the vicinal loss, which is based around the principles of
vicinal risk minimization(VRM) [6, 24]. They propose two variants
of this loss function —the hard vicinal discriminator loss (HVDL)
and the soft vicinal discriminator loss (SVDL). Rather than applying
the cGAN loss over the entire data at every training step, the loss is
applied to samples in the vicinity (in the condition space) of selected
labels from the data:

L̂HVDL (𝐷) =

− 𝐶1
𝑁 𝑟

∑𝑁 𝑟

𝑗=1
∑𝑁 𝑟

𝑖=1 E𝜖𝑟∼N(0,𝜎2)

[
1{���𝑦𝑟

𝑗
+𝜖𝑟 −𝑦𝑟

𝑖

���≤𝜅}
𝑁 𝑟

𝑦𝑟
𝑗
+𝜖𝑟 ,𝜅

log
(
𝐷

(
𝒙𝑟
𝑖
, 𝑦𝑟
𝑗
+ 𝜖𝑟

))]
− 𝐶2
𝑁𝑔

∑𝑁𝑔

𝑗=1
∑𝑁𝑔

𝑖=1 E𝜖𝑔∼N(0,𝜎2)

1{���𝑦𝑔

𝑗
+𝜖𝑔−𝑦𝑔

𝑖

���≤𝜅}
𝑁

𝑔

𝑦
𝑔
𝑗
+𝜖𝑔,𝜅

log
(
1 − 𝐷

(
𝒙
𝑔

𝑖
, 𝑦
𝑔

𝑗
+ 𝜖𝑔

)),
(1)

L̂SVDL (𝐷) =

− 𝐶3
𝑁 𝑟

∑𝑁 𝑟

𝑗=1
∑𝑁 𝑟

𝑖=1 E𝜖𝑟∼N(0,𝜎2)

[
𝑤𝑟

(
𝑦𝑟
𝑖
,𝑦𝑟

𝑗
+𝜖𝑟

)
∑𝑁𝑟

𝑖=1 𝑤
𝑟
(
𝑦𝑟
𝑖
,𝑦𝑟

𝑗
+𝜖𝑟

) log (
𝐷

(
𝒙𝑟
𝑖
, 𝑦𝑟
𝑗
+ 𝜖𝑟

))]
− 𝐶4
𝑁𝑔

∑𝑁𝑔

𝑗=1
∑𝑁𝑔

𝑖=1 E𝜖𝑔∼N(0,𝜎2)

[
𝑤𝑔

(
𝑦
𝑔

𝑖
,𝑦

𝑔

𝑗
+𝜖𝑔

)
∑𝑁𝑔

𝑖=1 𝑤
𝑔
(
𝑦
𝑔

𝑖
,𝑦

𝑔

𝑗
+𝜖𝑔

) log (
1 − 𝐷

(
𝒙
𝑔

𝑖
, 𝑦
𝑔

𝑗
+ 𝜖𝑔

))]
,

(2)

where 𝑦 denotes the label of the sample 𝑥 . Hyper-parameters 𝜎 and
𝜅 determine the width of the vicinity in conditioning space. 𝐶1, 𝐶2,
𝐶3, and 𝐶4 are constants. 𝑁 is the number of samples. Superscripts
𝑟 and 𝑔 denotes real and generated samples, respectively. For SVDL,
weights are applied to the loss values and are computed as:

𝑤𝑟
(
𝑦𝑟𝑖 , 𝑦

)
= 𝑒−𝜈 (𝑦

𝑟
𝑖
−𝑦)2 and𝑤𝑔

(
𝑦
𝑔

𝑖
, 𝑦

)
= 𝑒−𝜈 (𝑦

𝑔

𝑖
−𝑦)2 . (3)

Essentially, this loss is calculated by selecting samples with labels
𝑦 uniformly sampled from the data, adding random noise 𝜖 to the
selected labels 𝑦, and selecting samples such that their labels 𝑦
are in the vicinity of 𝑦 + 𝜖 . The same is done to obtain targets to
generate fake samples by the generator. Given these samples, the
discriminator is trained by minimizing Eq.1 or Eq.2. The generator
is then trained on targets in a similar vicinity of the samples the

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design KDD ’21, August 14–18, 2021, Virtual Event, Singapore

discriminator was trained on, by minimizing the following loss:

L̂𝜖 (𝐺) =

− 1
𝑁𝑔 E𝜖𝑔∼N(0,𝜎2) log

(
𝐷

(
𝐺

(
𝒛𝑖 , 𝑦

𝑔

𝑖
+ 𝜖𝑔

)
, 𝑦
𝑔

𝑖
+ 𝜖𝑔

))
.
(4)

Another challenge of cGAN that Ding et al.notes is the method
of feeding conditions [11]. They point out that when conditions
exist in finite space, one-hot encoding of the labels can be used,
however, this is simply not practical in continuous spaces as finite
distinct labels do not exit. They propose the improved label input
mechanism (ILI). It trains an embedder model that maps the con-
ditions (from data) to the features extracted from the last layer of
a pre-trained regression model. The embedder model is then used
during the GAN training to map arbitrary conditions to feature
vectors, which are fed to the generator through conditional batch
normalization [10]. The same embedded features are also used to
condition the discriminator.

We investigate the application of CcGAN in real-world and syn-
thetic examples and observe that CcGAN does not perform well
in conditioning especially when the label distribution is uneven
with sparse distribution of labels in some parts of the label space.
Further, we observe that CcGAN can suffer in diversity when the
data distribution in the design space is imbalanced. In this paper,
we propose a novel approach in conditioning in continuous spaces
to improve GAN performance in these applications.

2.2 Determinantal Point Processes
Determinantal Point Processes (DPPs), which arise in quantum
physics, are probabilistic models that model the likelihood of select-
ing a subset of diverse items as the determinant of a kernel matrix.
Viewed as joint distributions over the binary variables correspond-
ing to item selection, DPPs essentially capture negative correlations
and provide a way to elegantly model the trade-off between often
competing notions of quality and diversity. The intuition behind
DPPs is that the determinant of a kernel matrix roughly corresponds
to the volume spanned by the vectors representing the items. Points
that “cover” the space well should capture a larger volume of the
overall space, and thus have a higher probability. For the purpose of
working with most types of data the DPP kernel can be constructed
using the L-ensembles approach [5]. An L-ensemble defines a DPP
via a positive semi-definite matrix 𝐿 indexed by the elements of a
subset 𝑆 . The kernel matrix L defines a global measure of similarity
between pairs of items, so that more similar items are less likely
to co-occur. The probability of a set 𝑆 occurring under a DPP is
calculated as:

P𝐿 (𝑆) =
det (𝐿𝑆)
det(𝐿 + 𝐼) , (5)

where 𝐿𝑠 = [𝐿𝑖 𝑗]𝑖, 𝑗 ∈𝑆 denotes the restriction of L to the entries
indexed by elements of 𝑆 . DPP kernels can be decomposed into
quality and diversity parts [18]. The (𝑖, 𝑗)-th entry of a positive
semi-definite DPP kernel L can be expressed as:

𝐿𝑖 𝑗 = 𝑞𝑖𝜙 (𝑖)𝑇𝜙 (𝑗)𝑞 𝑗 , (6)

We can think of 𝑞𝑖 ∈ 𝑅+ as a scalar value measuring the quality
of an item 𝑖 , and 𝜙 (𝑖)𝑇𝜙 (𝑗) as a signed measure of similarity be-
tween items 𝑖 and 𝑗 . The decomposition enforces 𝐿 to be positive
semi-definite. Suppose we select a subset 𝑆 of samples, then this

decomposition allows us to write the probability of this subset 𝑆
as the square of the volume spanned by 𝑞𝑖𝜙𝑖 for 𝑖 ∈ 𝑆 using the
equation below:

P𝐿 (𝑆) ∝
∏
𝑖∈𝑆

(
𝑞2𝑖

)
det (𝐾𝑆) , (7)

where 𝐾𝑆 is the similarity matrix of 𝑆 . As item 𝑖’s quality 𝑞𝑖 in-
creases, so do the probabilities of sets containing item 𝑖 . As two
items 𝑖 and 𝑗 become more similar, 𝜙 (𝑖)𝑇𝜙 (𝑗) increases and the
probabilities of sets containing both 𝑖 and 𝑗 decrease. The previ-
ous model, PaDGAN, introduces a DPP loss to maximize the DPP
probability [7]. This simultaneously encourages a larger coverage
of the data space and high-quality sample generation. In PcDGAN,
we will also use this loss to promote good conditioning, which is
elaborated in the next section.

3 METHODOLOGY
In PcDGAN,we introduce an alternative perspective to conditioning
GANs on continuous labels. The overall architecture of PcDGAN
is shown in Fig. 1. Specifically, we approach the problem from an
engineering design prospective, where the objective is to generate
designs that (1) cover the entire design space evenly, and (2) meet
specific performance requirements (i.e., conditions). To address
these, we add a performance conditioned DPP loss and introduce a
different variant of the vicinal loss called the singular vicinal loss,
which overcomes the issue of data imbalance. Furthermore, the
singular vicinal loss promotes design space coverage for all points
in the label (performance) space. We describe the details of each
part in this section.

3.1 Determining the Quality of Conditioning
In cGAN and CcGAN, the discriminator must distinguish between
real and generated samples by using both data and labels (con-
ditions), effectively making it a vanilla discriminator and a label
predictor simultaneously. In PcDGAN, to enable improved condi-
tioning, we add a separate performance estimator. The performance
estimator is any differentiable estimator that can predict the la-
bel (i.e., design performance in our case) of any generated or real
samples. In many engineering design applications, we have high
fidelity, differentiable physics-based performance estimators (e.g.,
adjoint CFD solvers). When such a differentiable estimator does
not exist, we can train a neural network-based regressor as the
performance estimator.

PcDGAN enforces the conditioning by introducing a conditioning
quality term to the DPP loss. Specifically, the conditioning quality
reflects how well the condition is met by the generated samples.
It is used as the quality terms in the DPP kernel (𝑞𝑖and𝑞 𝑗 in Eq.6).
A straightforward way to measure the conditioning quality could
be using the negative norm (L1 or L2) of the difference between
the estimator prediction and the desired condition. This approach
in our experiments fails to provide good conditioning, possibly
because of the small gradients of the L1 (which is either 1 or -1)
and L2 norms, when the labels are normalized to range from 0 to 1.
Furthermore, the gradient of the L1 error is always constant and
the gradient of L2 error increases with poor conditioning which is

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

...

Input Noise

...

Input Conditions

...

Generated Samples

...

Estimated Label

Compute LLETS

Dataset Real Samples

...

Real Label

Singular
Vicinal Loss

Performance
Conditioned

DPP Loss

PcDGAN Loss

DPP Kernel

Discriminator

EstimatorGenerator

X1 X2 X3
Xn. . .

X1

X2

X3

..
.

Xn

...

Figure 1: PcDGAN architecture

not desirable when applying the resultant value as a (conditioning)
quality term in the DPP kernel.

Research at the intersection of reinforcement learning and GANs
has shown that increasing the weight, hence gradients, of samples
that have desirable features, reinforces the GANs to produce sam-
ples with such desirable features. This is demonstrated in objective-
reinforced GAN (ORGAN) [15], where objectives are reinforced by
weighing their gradients relative to their performance. However,
ORGAN required determining the weights of samples. In contrast,
we introduce an approach to systematically do this without having
to determine weights. We first list the properties needed in a condi-
tioning quality metric: 1) the quality score for each label needs to
have the same scale to avoid biasing the DPP probability function;
2) the gradient of the score function should ideally increase as the
conditioning quality increases, such that the score becomes self
reinforcing; 3) the gradient should smooth out beyond a certain
point to allow for stabilization at high quality; and 4) the score must
only have zero gradient at the origin (when the difference between
estimator prediction and the desired label is zero corresponding
to perfect conditioning). With these considerations, we introduce
a scoring function called Lambert log exponential transition score
(LLETS) which is expressed as

𝐿𝐿𝐸𝑇𝑆 (𝜖) =
 − ln𝜖

𝑎 𝜖 > 𝑒−𝑎𝑒
𝑊 (− 1

2𝑎)

𝑒−
𝜖2
2𝜎 𝜖 ≤ 𝑒−𝑎𝑒

𝑊 (− 1
2𝑎) , (8)

where 𝜖 = ∥𝑦condition −𝑦estimated∥1 is the L1 error between the esti-
mator prediction and the desired label. We scale the labels between
0 and 1 so that 𝜖 is also between 0 and 1. The Lambert cutoff 𝑎 ≥ 𝑒/2
is a hyper-parameter determining the location and quantity of the
maximum gradient.𝑊 refers to the Lambert W function and 𝜎 is
determined by:

𝜎 =
𝑒−𝑎𝑒

𝑊 (− 1
2·𝑎)√︂

−2 ·𝑊
(
− 1
2·𝑎

) . (9)

This score function is continuous and has a continuous first de-
rivative which increases from ±∞ up to ±𝑒−𝑎𝑒

𝑊 (− 1
2𝑎) , after which

the function quickly smooths out to a point of zero derivative at
0. Here the hyper-parameter 𝑎 determines how aggressively the
scoring works, in both absolute amount and gradient. Increasing 𝑎

will shift the point of maximum gradient closer to zero leading to a
more strict self-reinforcement and it also increases the maximum
gradient and the rate of increase in the gradient, hence leading
to a more aggressive training and self-reinforcement. In our ex-
periments, we find that a Lambert cutoff between 2 and 5 works
best. We report the results using a Lambert cutoff of 4.7, which we
empirically found to work best in our experiments.

3.2 Conditioning-driven Diversity Loss
We use the score computed by Eq. 8 as the quality term in the
DPP kernel (Eq. 6). This conditioning performance-based DPP loss
models diversity and conditioning simultaneously and assigns a
smaller loss value to samples that are diverse and meet conditioning
requirements. Specifically, we construct the kernel matrix 𝐿𝐵 for a
generated batch 𝐵 based on Eq. 6:

𝐿𝐵 (𝑖, 𝑗) = 𝑘
(
x𝑖 , x𝑗

) (
𝑞 (x𝑖) 𝑞

(
x𝑗

))𝛾0 , (10)

where 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐵, 𝑞(𝑥) is the quality function which determines
the quality of the samples generated, and 𝑘 (𝑥𝑖 , 𝑥 𝑗) is the similarity
kernel between 𝑥𝑖and𝑥 𝑗 . The exponent term 𝛾0 is introduced as a
parameter to control the trade-off between the conditioning score
and diversity. The conditioning performance-based DPP loss can
be expressed as:

LPcD (𝐺) = − 1
|𝐵 | log det (𝐿𝐵) = − 1

|𝐵 |

|𝐵 |∑︁
𝑖=1

log 𝜆𝑖 , (11)

where 𝜆𝑖 is the 𝑖-th eigenvalue of 𝐿𝐵 . This loss will then be added to
the overall loss of the generator during training. With this decompo-
sition of the DPP kernel, we combine the objective of diversity and
conditioning. In doing so, we not only promote good conditioning
and design space coverage but also ensure consistent conditioning
quality across the design space.

3.3 Vicinity-based Loss
The vicinal loss defined in Eq.1 and Eq.2 relies on uniform sampling
of labels from the training data. However, uniformly distributed
labels are uncommon in real-world settings. This leads to potentially
massive imbalances in the training with more common parts of the
label space receiving more attention. To address this problem, we
first randomly and uniformly sample a label between the minimum

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design KDD ’21, August 14–18, 2021, Virtual Event, Singapore

and maximum value (say 0 and 1 after normalization) and select
the label present in the data which is closest to this random label.
By doing so, we ensure even coverage of the conditioning space
and avoid the bias towards more common labels during training.

To achieve conditional diversity (i.e., generate diverse designs
given each condition/label), we introduce singular vicinal loss. Rather
than just selecting labels uniformly in the label space in each train-
ing step, we select only one label from the data and apply the
vicinal loss only for this label’s vicinity. The DPP loss would then
encourage even coverage of the design space given each label as the
condition. Intuitively, it will encourage designs which have similar
performance but different forms (e.g. shapes of airfoils), a much
desirable outcome for exploration of design options. Furthermore,
the conditioning quality term of the DPP will promote accurate
conditioning at all modes of the design space in this approach
as the DPP loss will only be applied to the vicinity of one label.
Therefore, by using the singular vicinal loss and the DPP loss, we
simultaneously promote large design space coverage and accurate
conditioning of performance labels across the design space. The
loss can be formulated by the same equations as Eq.1 and Eq.2 with
the following applied to all 𝑦 𝑗 ’s:

𝑦 𝑗 = 𝑦𝑠 for all 𝑗, 𝑦𝑠 ∈ 𝑝 (𝑦data) , (12)

where 𝑦𝑠 is the singular labels selected for the given training step,
which is selected by the process described at the beginning of this
section. The overall PcDGAN loss can be written as:

L𝑃𝑐𝐷𝐺𝐴𝑁 (𝐷,𝐺) = LsVDL (𝐷) + L𝜖 (𝐺) + 𝛾1L𝑃𝑐𝐷 (𝐺), (13)

where LsVDL (𝐷) refers to the singular vicinal loss. It can be either
a singular hard vicinal discriminator loss (sHVDL) or a singular soft
vicinal discriminator loss (sSVDL). L𝜖 (𝐺) is the vicinal loss term
of the generator. L𝑃𝑐𝐷 (𝐺) is the conditioning performance-based
DPP loss and the parameter 𝛾1 controls the weight this term.

3.4 Condition Input Mechanism
In this section, we propose a new way to effectively feed the con-
dition label to the generator and discriminator in a GAN model.
The embedder model used by the ILI method in [11] has several
issues: 1) it is computationally expensive to train; 2) it is difficult to
map a condition to the features extracted from the estimator’s last
layer as the mapping can be one-to-many; and 3) in many design
applications, differentiable high-fidelity estimators for providing
accurate label prediction are used, which means that there is no
need for a neural network estimator and one cannot extract the
features for training the embedder.

Instead of using an embedder, we start with a learnable embed-
ding and add the condition labels to this embedding to get a vector
𝒗0. Then we transform 𝒗0 into 𝒗1 through a fully connected layer.
We feed 𝒗1 to the generator’s convolutional layers using condi-
tional batch normalization [10] and to the discriminator by label
projection[21]. The described mechanism is illustrated in Fig. 2. By
proposing a simple learnable embedding and linear layer mecha-
nism instead of using an embedder, we find that the conditioning
improves significantly and the computational cost reduces. The
architecture of this label input mechanism is shown in Fig.2.

...

Input Labels

...

Input Noise Learnable
Embedding

Linear LayerLinear
Layers

...

Generated Samples

Cond. BN

Generator Input Mechanism

...

Real/Fake
Label

Inner Product
...

Real/Fake Samples

Real/Fake

Discriminator Input Mechanism

Conv.
Layers

Linear
Layers

Linear Layer 1

Linear Layer 2

Learnable
Embedding

Conv.
Layers

Figure 2: Label input mechanisms used in PcDGAN for the
generator (left) and discriminator (right)

3.5 Evaluation Metrics
Wemeasure the performance of models bymeasuring howwell they
meet a given condition and how diverse the set of generated samples
are. Tomeasure the success of conditioning we evaluate twometrics.
The first metric, named “label error”(called label score in [11]), is
the mean absolute error between the input condition and predicted
actual label of generated samples. This metric measures on average
how close the sample label is to the target label and the closer a value
is to zero, the better. Mean absolute error however, can be flawed in
measuring conditioning performance due to its sensitivity to a few
extreme ouliers, even if most samples are in the vicinity of the input
label. To overcome this issue we also define another metric, named
“likelihood score”, which measures the likelihood of the input label
under the generated samples’ label distribution. To calculate this
metric, we compute the Gaussian kernel density estimation (KDE)
of the output samples’ labels at the input condition (for every KDE
we find the optimal bandwidth using a grid search). Unlike the
label error, the likelihood score provides a more practical measure
from a design perspective as it indicates how likely it is that the
generated samples will meet a designer’s requirements. The higher
the likelihood score, the better.

To measure diversity in continuous space, we measure design
coverage (i.e., diversity) achieved by a set of samples generated by
each model using the log determinant of the similarity matrix of
the samples (i.e., the DPP log-likelihood):

𝑠div =
1
𝑛

𝑛∑︁
𝑖=0

log det
(
𝐿𝑆𝑖

)
, (14)

where 𝑛 is the number of times diversity is evaluated, 𝑆𝑖 ⊆ 𝑌 is a
random subset of 𝑌 , the set of generated samples or training data. L
is the similarity kernel. In the experiments, we set |𝑌 | = 1000, |𝑆𝑖 | =
10, and 𝑛 = 1000. We evaluate the above metrics 10 times for 100
conditions ranging from 0.05 to 0.95. Each time we generate 1000
samples for each condition (100,000 samples each time, totaling a
million samples for each model). To account for the stochasticity
of the models, we evaluate all the metrics in 10 different training
runs of each method.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

4 EXPERIMENTS
At this point, we have established our method and illustrated rea-
sons and justifications for why we believe our methods will perform
more accurate conditioning in continuous spaces. Here we perform
experiments to establish validation for our claims and provide evi-
dence of the performance of our model via two synthetic examples
and a real-world inverse airfoil design example. For further de-
tails on the implementation please refer to our code and data for
reproducing the experimental results1. The overall results of all
experiments with respect to all metrics is presented in Table1.

4.1 Synthetic Examples
To demonstrate PcDGAN’s performance we create two simulated
examples, shown in Fig. 3, where the conditioning performance can
be visually verified. In both examples we model the performance
metrics as a density function of an un-normalized Gaussian mixture:

𝑞(x) =
𝐾∑︁
𝑘=1

exp

(
− (x − 𝜇𝑘)𝑇 (x − 𝜇𝑘)

2𝜎2

)
, (15)

where 𝜇𝑘 is the mode of the 𝑘-th mixture component and 𝜎 is
the standard deviation. The centers 𝜇1, . . . , 𝜇𝐾 are evenly spaced
around a circle centered at the origin and with a radius of 0.4. We
set𝐾 = 6 and 𝜎 ≈ 0.1. Hence, there are six peaks in the conditioning
space making the problem a multi-modal problem. For every input
condition, there are points in all six modes and a method which
can generate samples in all the modes is preferred. For the first
example, the data is uniformly distributed within -0.6 and 0.6 of the
origin in both directions hence simulating a case where the data is
evenly covering the label space without any bias. For the second
example a similar distribution exists for 50% of the data, while the
other 50% of the data are located in a circle around one of the peaks
(centered at 𝜇2 with a radius of 0.2). The second example is used to
demonstrate the case where the data is distributed unevenly in the
design space, which may lead to mode collapse. In both examples,
10,000 data points are used for training.

4.2 Inverse Design of Airfoils
An airfoil is the cross-sectional shape of a wing and is commonly
found in blades of propellers, rotors, and turbines. A common prob-
lem faced by practitioners, while designing an airfoil, is to find the
right airfoil which meets a specific performance requirement. A
practitioner also benefits from considering multiple design alter-
natives and picking the one which meets their requirement. The
most common way to measuring the performance of airfoils is the
ratio of lift to drag, which we consider in this example. We show
how PcDGAN can be used for the inverse design of airfoil shapes
for any given performance target and it leads to a diverse set of
design alternatives. In this example, we use the UIUC airfoil data-
base2 as our data source. It provides the geometries of nearly 1,600
real-world airfoil designs. We pre-processed and augmented the
dataset based on [9] to generate a dataset of 38,802 airfoils, each
of which is represented by 192 surface points (i.e. 𝑥𝑖 ∈ R192×2). We
calculate the lift to drag ratio (𝐶𝐿/𝐶𝐷) for all airfoils and use it as a

1Code and data will be made open-source after paper acceptance
2https://m-selig.ae.illinois.edu/ads/coord_database.html

performance measure, on which the generative models are to be
conditioned. To obtain an airfoil’s performance, a computational
fluid dynamics (CFD) simulation is typically required, for which we
used the XFOIL software [12]. We scaled the performance scores
between 0 and 1. For the estimator we trained a neural network-
based surrogate model on all 38,802 airfoils to approximate 𝐶𝐿/𝐶𝐷 .
The distribution of 𝐶𝐿/𝐶𝐷 labels in the data is not uniform with a
mean of 0.4507 and standard deviation of 0.1483. The data is very
sparse at higher and lower values with only 0.18% of the data above
0.9 and 0.5% of the data below 0.1. The non-uniform distribution
of labels makes it difficult for any data-driven method to generate
samples in the sparse regions. We observe that PcDGAN’s singular
vicinal loss overcomes this issue.

4.3 Model Configuration
To demonstrate the performance of PcDGAN we compare it with
the state of the art approach in continuous conditioning CcGAN.
For diversity we use an RBF kernel with a bandwidth of 1 to con-
structing 𝐿𝐵 in Eq.10, i.e., 𝑘 (x𝑖 , x𝑗) = exp(−0.5∥x𝑖 − x𝑗 ∥2). This
gives a value between 0 to 1, with a higher value for more similar
designs. In the synthetic example we set 𝛾0 = 3.0 and 𝛾1 = 0.5 and
in the airfoil example we set 𝛾0 = 3.0 and 𝛾1 = 0.4. Further, for the
quality term in Eq. 10 in the airfoil example, we use a realistic con-
ditioning quality[7] which means that the conditioning quality will
be multiplied by the discriminator output, i.e. 𝑞(x) = 𝐷 (x)𝑞′(x),
so as to promote GAN stability. For the LLETS, we set 𝑎 = 4.7 for
all examples(this value was found to work best through empirical
experimentation). Finally, in both methods, we use the soft vicinal
loss (it was observed that the soft vicinal loss performed better in
both methods across all examples) and pick 𝜅 and 𝜎 based on the
rule of thumb method described by [11]. In the Airfoil example we
used a residual neural network (ResNet)[16] trained on the dataset
as the estimator model and a BézierGAN[8] to generate airfoils.
In this example we refer to the continuously conditioned Bézier-
GAN as ‘CcGAN’ and the BézierGAN with L𝑃𝑐𝐷 as ‘PcDGAN’. In
the airfoil example we train an embedder model exactly as imple-
mented in [11] for the CcGAN model using the ResNET estimator.
For the synthetic examples the exact equation (Eq.15) was used as
the estimator for PcDGAN.

5 RESULTS AND DISCUSSION
In this section we report the results of applying PcDGAN to two
synthetic and one real-world example.

5.1 Synthetic Example
The results of the experiments on both examples are presented in
Fig.3 which shows the statistics of each model in all three perfor-
mance metrics across ten runs. Both examples show that PcDGAN
outperforms CcGAN in all threemetrics. In conditioningwe observe
that in the first example CcGAN has higher label error and worse
likelihood performance compared to example 2, while PcDGAN’s
performance remains consistent and better than CcGAN in both
examples. This difference in conditioning performance can be ex-
plained by the difference in diversity. We observe that despite
PcDGAN performing better in diversity in the first example the

https://m-selig.ae.illinois.edu/ads/coord_database.html

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design KDD ’21, August 14–18, 2021, Virtual Event, Singapore

Figure 3: Visualization of the synthetic examples. In the left-most images, orange dots indicate data-points. Only a sub-sample
of 1,000 of the 10,000 data points is shown for clarity. The plots on the right indicate the mean and standard deviation of
PcDGAN and CcGAN for all three metrics.

difference between the diversity of themodels is insignificant, mean-
ing that both models cover the design space well with PcDGAN
performing slightly better, which is expected as the dataset covers
the design space uniformly. In the second examples however we
observe a large gap in the diversity performance of CcGAN and
PcDGAN, with PcDGAN performing similar to the first example but
CcGAN suffering in producing diverse samples. This indicates that
CcGAN produces samples mostly in the dominant region, which
means that the model will only have to condition well on one mode,
which is a much easier task than doing so across all modes. This is
the underlying cause of the improvement in CcGANs performance.
This is all while PcDGAN performs consistently across both exam-
ples in both conditioning and diversity. This difference in diversity
can be visually verified in these 2D examples. In Fig.4 the samples
generated by both models conditioned on 0.4 is visualized(the same
patterns are observed across all conditions). Ideally, any good de-
sign generation model should cover all modes of the data despite
the imbalance in the dataset. In Fig.4 we observe that PcDGAN has
produced samples in all modes while also maintaining very good
conditioning across all modes, however we see that CcGAN not
only fails to cover all modes as evenly as PcDGAN but it also fails
to produce well conditioned samples in less common modes when
it does produce samples in those regions. PcDGAN’s performance
is due to the functionality of the conditioning performance-based
DPP loss which not only promotes good coverage but also promotes
high quality conditioning across all modes.

Figure 4: Comparison of output distribution of 1000 gener-
ated data points, shown by orange dots, from CcGAN and
PcDGAN for input condition of 0.4 in Example 2.

5.2 Inverse Airfoil Design
We observe that across all metrics PcDGAN performs well and out-
performs CcGAN (Fig.5) with an average performance gain of 7.75
on the likelihood score from 3.429 (CcGAN) to 11.181 (PcDGAN),
an average reduction of 0.09 in label error from 0.119 (CcGAN)
to 0.0284 (PcDGAN) and an average gain of 2.73 in the diversity
score from -19.297 (CcGAN) to -16.567 (PcDGAN) (Table1). The low
label errors and high likelihood scores across all conditions shows
that the performance of the generated samples is closely met by
PcDGAN. For all conditions, the average diversity of samples is also
higher in PcDGAN which indicates that PcDGAN covers the design
space better and consistently across all conditions. It is important to
note that in PcDGAN, the variation of metrics across conditioning
space for different runs is low compared to CcGAN, which has
high variations. To further demonstrate the performance of each
approach, we use t-Distributed Stochastic Neighbor Embedding
(t-SNE) to map airfoils onto a two dimensional space. The results
of this are shown in Fig.7. To compute t-SNE we use 1000 samples
from the data with labels in the vicinity of the input label 0.3 (labels
within 0.3 ± 0.025), then we generate 1000 samples using PcDGAN

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

Figure 5: Comparison of performance between CcGAN and PcDGAN for different conditions in the airfoil example. The graph
indicates themean and standard deviation. PcDGAN shows better performance and lower variation across runs for all metrics.

Figure 6: Airfoil shapes generated by each model for different conditions, with their label error shown below every airfoil.

Figure 7: We show airfoils corresponding to samples from a) data, b) CcGAN and c) PcDGAN, all conditioned on 0.3 with with
the predicted labels within 0.3 ± 0.025. All samples are mapped to the same 2D space using t-SNE. Orange dots in plots (b) and
(c) indicate embeddings of the real data. This shows that PcDGAN samples are more diverse and cover a larger design space.

Table 1: Experimental results (mean and standard deviation)

Model Likelihood Score Label Error Diversity Score

Ex. 1 CcGAN 3.494±2.307 0.1296±0.0452 -55.817±4.637
PcDGAN 13.604±3.628 0.0725±0.0288 -54.537±4.728

Ex. 2 CcGAN 6.043± 1.383 0.082±0.012 -76.412±14.896
PcDGAN 14.280±3.213 0.068±0.022 -59.938±9.468

Airfoil CcGAN 3.429±2.240 0.119±0.026 -19.297±2.140
PcDGAN 11.181±2.686 0.0284±0.004 -16.567±1.509

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design KDD ’21, August 14–18, 2021, Virtual Event, Singapore

and another 1000 samples using CcGAN both conditioned on the
input label of 0.3 and with predicted labels within 0.3 ± 0.025 to
visualize the output distributions of useful (i.e., near target perfor-
mance) samples generated by each model. We then plot the results
of 50 samples from each of the data, PcDGAN, and CcGAN in Fig.7.
Further we display these airfoils and their location in the t-SNE
plot on Fig.7(a)-(c). we observe that CcGAN has failed to cover the
entire sample space evenly with gaps existing in the data that are
not covered by CcGAN. This is while PcDGAN has been able to fill
in some of the gaps in the data (i.e., interpolate) with useful samples
that have labels much closer to the input label condition. Finally, in
Fig.6 we plot the geometries of some of the generated samples at
different conditions using both approaches and display their respec-
tive label errors below them. It is observed that PcDGAN generated
samples have lower label errors across all labels. Furthermore, it
is observed that the quality of airfoils generated by CcGAN at low
input labels(Left most column in Fig.6) are far lower than PcDGAN
with some airfoils having open trailing edges and unrealistic shapes.
This is caused by the fact that the number of samples with labels
in that vicinity are lower, which means that CcGAN will not be
trained on those labels as often as other labels, which has results
in lower quality and unrealistic samples being generated for less
common labels.

6 CONCLUSION AND FUTUREWORK
In this work, we introduced a novel method for conditioning GANs
in continuous spaces while promoting diversity in the generated
samples and allowing for the direct use of any differentiable es-
timator (exact or regression estimator) to improve conditioning.
We achieved this by introducing a novel method for measuring
the quality of conditioning called “LLETS" with self-reinforcing
properties. We integrated LLETS with a DPP based diversity loss
function to promote diversity and high-quality conditioning simul-
taneously and name the resultant GAN model as “PcDGAN”. In
PcDGAN, we also introduced the singular vicinal loss to overcome
data imbalance and sparsity challenges and reduce performance
variation. We show through both synthetic and real-world exper-
iments that PcDGAN out-performs the current state of the art in
continuous conditioning CcGAN in both producing diverse and
well-conditioned samples. Furthermore, we show that even when
few samples exist in some parts of the conditioning space (less
than 0.2%), PcDGAN can produce samples with a high likelihood of
meeting input conditions while prior methods simply fail to do so.

PcDGANwas developed with design applications in mind, where
engineering design space exploration requires models that can
generate samples covering the entire design space while meeting
certain requirements(i.e., conditions). We show that PcDGAN is ca-
pable of accomplishing both objectives of design space exploration.
It is capable of generating new designs that are highly likely to meet
design requirements while covering the entire design space and
sometimes expanding it to fill in the gaps in the data distribution.
These properties make PcDGAN an ideal approach in data-driven
design synthesis and design space exploration, which can be used
as a valuable tool for inspiring new engineering designs. Despite
being design-centric, our method can be generalized to other do-
mains or more complex data-driven synthesis tasks. One example

could be 3D design synthesis or CAD generation, where PcDGAN
can be trained on a 3D dataset to produce CAD models that can
be conditioned to meet physical and mechanical constraints and
performance requirements. Other applications include image gen-
eration, metamaterial design or parametric design.

Finally, even though we demonstrate our methods in GANs, the
DPP based loss or the LLETS alone can be used in any other data-
driven synthesis method such as VAEs. Furthermore, our method
can be expanded to multi-objective problems with the same LLETS
quality applied across a vector of conditions rather than a single con-
dition. Future work will focus on adapting the singular vicinal loss
to higher dimensional conditions when the data sparsity problem
is more severe and explore PcDGAN’s integration with objective
reinforced learning for problems where training a differentiable
performance estimator is not feasible.

REFERENCES
[1] Gabriel Achour, Woong Je Sung, Olivia J Pinon-Fischer, and Dimitri N Mavris.

2020. Development of a Conditional Generative Adversarial Network for Airfoil
Shape Optimization. In AIAA Scitech 2020 Forum. 2261.

[2] Faez Ahmed, Kalyanmoy Deb, and Bishakh Bhattacharya. 2016. Structural topol-
ogy optimization using multi-objective genetic algorithm with constructive
solid geometry representation. Applied Soft Computing 39 (2016), 240 – 250.
https://doi.org/10.1016/j.asoc.2015.10.063

[3] W Kyle Anderson and V Venkatakrishnan. 1999. Aerodynamic design optimiza-
tion on unstructured grids with a continuous adjoint formulation. Computers &
Fluids 28, 4-5 (1999), 443–480.

[4] Martin Philip Bendsoe and Ole Sigmund. 2013. Topology optimization: theory,
methods, and applications. Springer Science & Business Media.

[5] Alexei Borodin. 2009. Determinantal point processes. arXiv:0911.1153 [math.PR]
[6] Olivier Chapelle, Jason Weston, Léon Bottou, L Eon Bottou, and Vladimir Vapnik.

2001. Vicinal Risk Minimization. In Advances in Neural Information Processing
Systems. MIT Press, 416–422.

[7] Wei Chen and Faez Ahmed. 2020. PaDGAN: Learning to Generate High-Quality
Novel Designs. Journal of Mechanical Design 143, 3 (2020). https://doi.org/10.
1115/1.4048626

[8] Wei Chen, Kevin Chiu, and Mark Fuge. [n.d.]. Aerodynamic Design Optimization
and Shape Exploration using Generative Adversarial Networks. https://doi.org/10.
2514/6.2019-2351 arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2351

[9] Wei Chen and Mark Fuge. 2019. Synthesizing Designs With Interpart De-
pendencies Using Hierarchical Generative Adversarial Networks. https:
//doi.org/10.1115/1.4044076

[10] Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin,
and Aaron C Courville. 2017. Modulating early visual processing by language.
In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, Inc., 6594–6604. https://proceedings.neurips.cc/paper/2017/
file/6fab6e3aa34248ec1e34a4aeedecddc8-Paper.pdf

[11] Xin Ding, Yongwei Wang, Zuheng Xu, William J. Welch, and Z. Jane Wang. 2020.
Continuous Conditional Generative Adversarial Networks for Image Generation:
Novel Losses and Label Input Mechanisms. arXiv:2011.07466 [cs.CV]

[12] Mark Drela. 1989. XFOIL: An Analysis and Design System for Low Reynolds
Number Airfoils. In Low Reynolds Number Aerodynamics, Thomas J. Mueller (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[13] Pierre Duysinx and Martin P Bendsøe. 1998. Topology optimization of contin-
uum structures with local stress constraints. International journal for numerical
methods in engineering 43, 8 (1998), 1453–1478.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial
Networks. Commun. ACM 63, 11 (Oct. 2020), 139–144. https://doi.org/10.1145/
3422622

[15] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pe-
dro Luis Cunha Farias, and Alán Aspuru-Guzik. 2018. Objective-Reinforced
Generative Adversarial Networks (ORGAN) for Sequence Generation Models.
arXiv:1705.10843 [stat.ML]

[16] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[17] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

https://doi.org/10.1016/j.asoc.2015.10.063
https://arxiv.org/abs/0911.1153
https://doi.org/10.1115/1.4048626
https://doi.org/10.1115/1.4048626
https://doi.org/10.2514/6.2019-2351
https://doi.org/10.2514/6.2019-2351
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2019-2351
https://doi.org/10.1115/1.4044076
https://doi.org/10.1115/1.4044076
https://proceedings.neurips.cc/paper/2017/file/6fab6e3aa34248ec1e34a4aeedecddc8-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6fab6e3aa34248ec1e34a4aeedecddc8-Paper.pdf
https://arxiv.org/abs/2011.07466
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://arxiv.org/abs/1705.10843
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1312.6114

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

[18] Alex Kulesza. 2012. Determinantal Point Processes for Machine Learning.
Foundations and Trends® in Machine Learning 5, 2-3 (2012), 123–286. https:
//doi.org/10.1561/2200000044

[19] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial
Nets. arXiv:1411.1784 [cs.LG]

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
2018. Spectral Normalization for Generative Adversarial Networks.
arXiv:1802.05957 [cs.LG]

[21] Takeru Miyato and Masanori Koyama. 2018. cGANs with Projection Dis-
criminator. In International Conference on Learning Representations. https:
//openreview.net/forum?id=ByS1VpgRZ

[22] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015. Learning structured output
representation using deep conditional generative models. Advances in neural
information processing systems 28 (2015), 3483–3491.

[23] A. Tahadjodi Langroudi, F. Zare Afifi, A. Heyrani Nobari, and A.F. Najafi. 2020.
Modeling and numerical investigation on multi-objective design improvement
of a novel cross-flow lift-based turbine for in-pipe hydro energy harvesting
applications. Energy Conversion and Management 203 (2020), 112233. https:
//doi.org/10.1016/j.enconman.2019.112233

[24] Vladimir N. Vapnik. 2000. The Nature of Statistical Learning Theory. (2000).
https://doi.org/10.1007/978-1-4757-3264-1

[25] Emre Yilmaz and Brian German. 2020. Conditional Generative Adversarial
Network Framework for Airfoil Inverse Design. In AIAA AVIATION 2020 forum.

A IMPLEMENTATION AND MODEL
ARCHITECTURE DETAILS

In this section we will discuss some of the detailed explanation
of our implementation and training parameters for each of the
experimental examples.

A.1 Airfoil Example
A.1.1 ResNet Estimator. As discussed in the body of the paper
we train a ResNet model as a surrogate estimator in place of an
exact estimator to predict the lift to drag ratio of any given airfoil.
This model is then used during the training of PcDGAN. Further
this model is what we use to train the embedder model of CcGAN.
The architecture of this model is presented in Fig.8. Given the
fact that the data is very imbalanced if the surrogate model is
directly trained on the data it will form a bias towardsmore common
labels which would negatively effect both CcGAN and PcDGAN’s
performance. Given this during the training of the estimator we
select balanced minibatches, that is to say we sample data such
that the labels cover the label space uniformly (Sample random
uniform numbers between minimum and maximum label and pick
the sample with the label closest to the random number). A similar
approach is taken in training the embedder of the CcGAN. We
observe that because we use the estimator to report conditioning
results if the estimator is not balanced real-life performance of
airfoils will not be as conditioned as well in neither CcGAN nor
PcDGAN, however the trend of the overall performance data based
on the estimator which is reported in the paper does not change in
comparing the two models. Our code uses XFOIL to verify that the
trends in conditioning of all methods do translate to exact numerical
simulations of the airfoils (refer to section A.3 for code). Finally, for
training both the estimator and embedder we use Adam optimizer
with a base learning rate of 10−4 which decays with a multiplier
of 0.46 every 2500 of training steps (staircase decay) and we train
both models for 10,000 steps with a batch size of 256 and apply
ealry stopping based on the performance of the models on a smaller
subset of the data used for validation and testing. The architecture
of the CcGAN embedder model is identical to the CcGAN author’s
approach described in [11].

A.1.2 BézierGAN Training Details. To generate airfoils we use the
BézierGAN architecture which has been used successfully to gen-
erate realistic curves and specifically airfoils. Our implementation
is identical to the authors implementation [8] with the only differ-
ence being in our added label input mechanism. For the generator
we replace all batch normalization layers with conditional batch
normalization which is conditioned on the embedder output in
CcGAN and on the label embedding in PcDGAN. To obtain label
embedding in PcDGAN each of the generator and discriminator
have separate label embedding mechanism as described in Fig.2. To
keep the size of the model the same as in CcGAN, the linear layer
we use to go from the learnable embedding to the input of the condi-
tional batch normalization has an output size of 128. The learnable
embedding itself has a size of 10, which makes this mechanism
much smaller than the 7 layers of size 128 used in the CcGAN ILI
embedder. For the discriminator we use label projection for both Cc-
GAN and PcDGAN as described by Fig.2. Note that before the inner

https://doi.org/10.1561/2200000044
https://doi.org/10.1561/2200000044
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1802.05957
https://openreview.net/forum?id=ByS1VpgRZ
https://openreview.net/forum?id=ByS1VpgRZ
https://doi.org/10.1016/j.enconman.2019.112233
https://doi.org/10.1016/j.enconman.2019.112233
https://doi.org/10.1007/978-1-4757-3264-1

PcDGAN: A Continuous Conditional Diverse Generative Adversarial Network For Inverse Design KDD ’21, August 14–18, 2021, Virtual Event, Singapore

Figure 8: ResNet Architecture of the estimator

product in the label projection we apply spectral normalization[20]
for both CcGAN’s and PcDGAN’s linear layer output which maps
embeddings to a vector of the correct size suitable for applying the
inner product(liear layer 2 in Fig.2). In training we use the Adam
optimizer with a base learning rate of 10−4 which decays with a
multiplier of 0.8 every 2,000 steps. We train both models for 20,000
steps with a batch size of 32. Furthermore, it is important to note
that the authors of BézierGAN [8] use a separated discriminator
training(i.e., the discriminator is trained in two step, one on the
fake samples and one on the real samples), however this approach
rendered CcGAN entirely non-functional, therefore, we used mixed
training for CcGAN in this example while using the original imple-
mentation in PcDGAN as it did not have any negative results on
PcDGAN.

Finally, it is important tomention that for the training of PcDGAN
in the airfoil example an escalating schedule for𝛾1 (DPP loss weight)
is implemented. PcDGAN is more likely to generate unrealistic de-
signs in early stages of training. Thus, 𝛾1 is initialized at 0 and
increases during training, so that PcDGAN focuses on learning real-
istic designs at the early stage, and takes conditioning and diversity
into consideration later. The schedule is set as:

𝛾1 = 𝛾
′
1

(𝑡
𝑇

)𝑝
where 𝛾 ′1 is the value of 𝛾1 at the end of training, 𝑡 is the current
training step, 𝑇 is the total number of training steps, and 𝑝 is a
factor controlling the steepness of the escalation which we set to
5.0 in out training. This is not necessary for the synthetic examples.

A.2 Synthetic Example
In the synthetic example the models used have very simple archi-
tectures described in Fig.9.

Figure 9: Architecture of model used in the synthetic exam-
ples

For the synthetic example we simply concatenate the input label
and the rest of the inputs for both the discriminator and the gen-
erator. In these simple examples we the need for a complex label
input mechanism does not exists and the authors of CcGAN[11]
also purport to this in their implementation. We observed no sig-
nificant improvement in the performance of either method using
other label input mechanisms similar to the mechanism used in the
convolutional neural network. In fact we observed the performance
of both models decline when more complex mechanisms were used.

Furthermore, since the exact equation of performance is known
in synthetics examples there is no need to train a neural network
based estimator for PcDGAN and the exact equation is used as the
estimator. This is similar to a case where an exact estimator exists.
Moreover, since the label input mechanism is reduced to simply
concatenating at the input CcGAN also does not need an embedder

KDD ’21, August 14–18, 2021, Virtual Event, Singapore Amin Heyrani Nobari, Wei Chen, and Faez Ahmed

model, which means that we did not train any other models besides
the GANs in this example.

For training we use the Adam optimizer with a base learning
rate of 10−4 which decays with a multiplier of 0.8 every 5,000 steps.
We train both models for 50,000 steps with a batch size of 32.

A.3 Code and GitHub Repository
The full implementation of the code used for this paper along with
the airfoil dataset will be made available and open source upon the

acceptance of this paper. The Github repository can be found under
the url below:

https://github.com/pcdgan/PcDGAN
With regards to referenced architecture and methodology and

algorithms, the code replicates these methodology as closely as
possible to the authors’ best knowledge and without any alterations
unless mentioned in this section(such as the mixed discriminator
training in BézierGAN implemented to improve CcGAN Results).

https://github.com/pcdgan/PcDGAN

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Continuous Conditioning of Generative Adversarial Networks
	2.2 Determinantal Point Processes

	3 Methodology
	3.1 Determining the Quality of Conditioning
	3.2 Conditioning-driven Diversity Loss
	3.3 Vicinity-based Loss
	3.4 Condition Input Mechanism
	3.5 Evaluation Metrics

	4 Experiments
	4.1 Synthetic Examples
	4.2 Inverse Design of Airfoils
	4.3 Model Configuration

	5 Results and Discussion
	5.1 Synthetic Example
	5.2 Inverse Airfoil Design

	6 Conclusion and Future Work
	References
	A Implementation and Model architecture Details
	A.1 Airfoil Example
	A.2 Synthetic Example
	A.3 Code and GitHub Repository

